

Prepared For:

MONTROSE AIR QUALITY SERVICES

> Suncor Energy (U.S.A.) Inc. 5801 Brighton Blvd Commerce City, CO 80022

Prepared By:

Montrose Air Quality Services, LLC 990 W 43rd Ave Denver, CO 80204

Document Number: 017ET-008224-PP-3-R1 Submittal Date: August 9, 2021 Revision Date: February 24, 2022

DOCUMENT REVISIONS LOG

Date	Document Number	Description	Author
8/9/21	017ET-008224-PP-3	Original document published	A. Heitmann
2/24/22	017ET-008224-PP-3-R1	Added CM9 location in Table 1-2, Updated correct RMSE in Table 3-10	B. Lawlor

TABLE OF CONTENTS

<u>SEC</u>		<u>1</u>	<u>PAGE</u>
1.0	OBJ	ECTIVES AND SUMMARY OF TEST PROGRAM	5
	1.1	BACKGROUND	5
	1.2	GENERAL	5
	1.3	PROJECT CONTACTS	7
		1.3.2 Personnel	7
		1.3.2 Responsibilities	8
2.0	EQU	IPMENT DESCRIPTION	8
	2.1	Lunar Outpost Canary-s	8
	2.2	VOC Canister Sampling	9
	2.3	AQMesh Pod	10
	2.4	AeroQual AQM 65	10
	2.5	DATA PLATFORM	11
3.0	QUA	LITY ASSURANCE QUALITY CONTROL	13
	3.1	KNOWN-LIMITATIONS AND INTERFERENCES	13
	3.2	DEPLOYMENT PROCEDURES	13
		3.2.1 Sensor Deployment/Maintenance Log	14
		3.2.2 Canary-S PID Gas Calibration	14
		3.2.3 AQMesh Pod Criteria Pollutant and H ₂ S Gas Calibration	14
		3.2.4 AQM 65 Gas Validation	16
		3.2.6 Co-Location Study	17
		3.2.7 FEM Co-Location Study	19
	3.3	ON GOING QUALITY ASSURANCE QUALITY CONTROL	19
		3.3.1 Data Platform Alerts	20
		3.3.2 Daily Quality Assurance Checks	20
		3.3.3 Monthly Canary-S and AQMesh Quality Assurance Checks	21
		3.3.4 AQM Quality Assurance Checks and Calibration	23
		3.3.5 Sensor Replacement Schedule	24
4.0	REP	ORTING	24
APF	PEND	IX A Lunar Outpost Canary-S Specification Sheet	25
APF	PEND	IX B AQMesh Pod Specification Sheet	26
APF	PEND	IX C Aeroqual AQM65 Specification Sheet	27
APF	PEND	IX D Example Morning System Report	28

SECTION

PAGE

LIST OF TABLES

TABLE 1-1 SUMMARY OF EQUIPMENT	5
TABLE 1-2 SUMMARY OF INITIAL DEPLOYMENT	6
TABLE 1-3 PROJECT PERSONNEL	7
TABLE 1-4 PERSONNEL RESPONSIBILITIES	8
TABLE 2-1 Canary-S Specifications	9
TABLE 2-2 AQMesh Pod Specifications	10
TABLE 2-3 AQM 65 Specifications	10
TABLE 3-1 MINIMUM PID GAS QUALITY CONTROL CRITERIA	14
TABLE 3-2 MINIMUM CO GAS QUALITY CONTROL CRITERIA	15
TABLE 3-3 MINIMUM NO GAS QUALITY CONTROL CRITERIA	15
TABLE 3-4 MINIMUM NO2 GAS QUALITY CONTROL CRITERIA	15
TABLE 3-5 MINIMUM H₂S GAS QUALITY CONTROL CRITERIA	15
TABLE 3-6 MINIMUM SO2 GAS QUALITY CONTROL CRITERIA	16
TABLE 3-7 MINIMUM AQM 65 GAS VALIDATION CRITERIA	17
TABLE 3-8 MINIMUM NEAR-FEM CO-LOCATION CRITERIA	18
TABLE 3-9 MINIMUM SENSOR-NEAR-FEM CO-LOCATION CRITERIA	18
TABLE 3-10 WELBY VS AQM 65 COLLOCATION RESULTS	19
TABLE 3-11 PLATFORM ALERT CRITERIA	20
TABLE 3-12 MINIMUM DEPLOYMENT CRITERIA	20
TABLE 3-13 MONTROSE REVIEW CRITERIA	21
TABLE 3-14 AQMESH AUTOMATED QUALITY ASSURANCE CODES	22
TABLE 3-15 AEROQUAL AQM65 MAINTENANCE SCHEDULE	23
LIST OF FIGURES	
FIGURE 2.1 SCREEN SHOT OF THE AIRSENSE DASHBOARD	12
FIGURE 2.2 SCREEN SHOT OF THE PUBLIC DASHBOARD	12
FIGURE 3.1 AQM 65 INTERNAL CALIBRATION SYSTEM	17

1.0 OBJECTIVES AND SUMMARY OF TEST PROGRAM

1.1 BACKGROUND

Suncor Energy (U.S.A.) Inc. (Suncor) has planned to install an air quality (AQ) monitoring network around their operation facilities and in local communities to provide real-time AQ data. Montrose Air Quality Services, LLC has been selected to deploy, maintain and operate the AQ monitoring network on behalf of Suncor. The ambient air monitoring network will utilize cutting-edge air pollution sensor technology, redeveloped with solar power capabilities, battery storage and data connectivity. The network will also include monitoring stations that are considered 'Near-Federal Equivalent Method' (near-FEM) instruments; these instruments will be used to improve the accuracy of the sensors. The network will include 10 separate monitoring locations with measurement data transmitted to a platform dashboard. The dashboard will display near real-time data and recent alerts.

1.2 GENERAL

The procedures outlined in this document cover the quality assurance procedures to be utilized in the deployment, operations and maintenance of the sensors. The sensors and samplers to be employed during the project are the Lunar Outpost Canary-S, AQMesh Pod, Aeroqual AQM65, and VOC automated canister collection. Meteorological monitoring will also be conducted at all of the locations. A specification sheet on the sensors can be found in Appendix A. As part of this program, an AQ data platform, developed by the third-party company SensibleIOT, manages, quality controls, and reports the sensor data. The following table details the equipment that will be deployed and their respective pollutant and parameters measured:

Equipment Model	Pollutant/Parameter					
Canary-S	Total VOC (TVOC), PM2.5, Ambient Temperature, Relative Humidity, Wind Speed and Direction					
AQMesh Pod	SO2, CO, NO, NO2, H2S					
AQM65	TVOC, SO2, CO, NO, NO2, H2S, PM2.5, Ambient Temperature and Relative Humidity.					
Summa Canisters	Speciated VOC					

TABLE 1-1SUMMARY OF EQUIPMENT

A list of locations targeted for initial deployment are outlined in Table 1-2 below. Deployment will be completed by August 3, 2021.

TABLE 1-2SUMMARY OF INITIAL DEPLOYMENT

Location	Facility	Address	Latitude/Longitude	Equipment
Community Monitoring Site 1	Rose Hill Elementary	6900 E 58th Ave, Commerce City, CO 80022	39.80164, -104.90882	Canary-S and AQMesh
Community Monitoring Site 2	Suncor – Refinery Business Center	5801 Brighton Blvd, Commerce City, CO 80022	39.79599, -104.95603	AQM65, Canary-S, and AQMesh
Community Monitoring Site 3	Adams City High School	7200 Quebec Pkwy, Commerce City, CO 80022	39.82736, -104.90193	Canary-S and AQMesh
Community Monitoring Site 4	Adams City Middle School	4451 E 72nd Ave, Commerce City, CO 80022	39.82893, -104.93499	Canary-S and AQMesh
Community Monitoring Site 5	Central Elementary School	6450 Holly St, Commerce City, CO 80022	39.81457, -104.91928	Canary-S and AQMesh
Community Monitoring Site 6	Focus Point Family Resource Center	2501 E. 48th Ave. Denver, CO, 80216	39.78436, -104.95663	AQM65, Canary-S, and AQMesh
Community Monitoring Site 7	Kearney Middle School	6160 Kearney St, Commerce City, CO 80022	39.80888, -104.91545	AQM65, Canary-S, and AQMesh
Community Monitoring Site 8	Suncor-Monroe St Property	6599-6401 Monroe St, Commerce City, CO 80022	39.8156, -104.94503	Canary-S and AQMesh
Community Monitoring Site 9	48 th and Race	East 48 th Ave. & Race St., Denver	39.78455, -104.96264	Canary-S and AQMesh
Community Monitoring Site 10	TBD	TBD	TBD	Canary-S and AQMesh

1.3 PROJECT CONTACTS

1.3.2 Personnel

A list of project participants is included below in Table 1-3:

TABLE 1-3 PROJECT PERSONNEL

Montrose Air Quality Services, LLC

Project Contact:	Austin Heitmann	Pat
Title:	Project Manager	VP.
Address:	990 W. 43 rd Ave.	990
	Denver, CO 80211	Der
Telephone:	303-670-0530	303
Email:	aheitmann@montrose-env.com	pcla

Patrick Clark, PE, QSTI VP Ambient and Emerging Tech. 990 W. 43rd Ave. Denver, CO 80211 303-670-0530 pclark@montrose-env.com

Suncor Energy (U.S.A.) Inc.

Suncor Project Technical Lead Contact:	Rob Mennillo
Title:	Senior Environmental Advisor
Address:	5801 Brighton Blvd
	Commerce City, CO 80022
Email:	rmennillo@suncor.com

Laboratory

Laboratory:	Enthalpy Analytical
City, State:	Durham, North Carolina

Data Platform

Company:	Sensible IOT
Contact:	Matt Beach
Telephone:	805-233-2298
Email:	matt@sensibleiot.com

1.3.2 Responsibilities

Table 1-4 below details the roles and responsibilities of the project team.

PERSONNEL RESPONSIBILITIES						
Person/Company	Primary Assignment					
Montrose	Project Operator, Sensor Deployment, sensor operations, sensor maintenance and QA/QC					
Rob Mennillo	Suncor Project Technical Lead					
Lunar Outpost	Sensor manufacturer					
AQMesh	Sensor manufacturer					
Aeroqual	Near-FEM manufacturer					
Enthalpy	Offsite Laboratory					
SensibleIOT	Data platform development and ongoing platform operations					

TABLE 1-4

2.0 EQUIPMENT DESCRIPTION

2.1 LUNAR OUTPOST CANARY-S

The Canary-S is a solar powered air quality monitoring system manufactured by Lunar Outpost, a Colorado company. It is equipped with a variety of sensors, cellular communication, and powered via a solar panel and battery. A multitude of units can be deployed to create a network of real-time, localized data focusing on air quality and meteorological measurements. The sensors contained in the units are capable of measuring TVOC and PM_{2.5}. The units will also measure ambient temperature, barometric pressure, relative humidity, wind speed and direction. The Canary-S principle of operation is outlined in the Table 2-1 and provides a sampling frequency of one (1) minute. A complete datasheet summarizing the specifications of the Canary-S can be found in the Appendix A of this Quality Assurance Project Plan (QAPP).

Canary-S Specifications									
Air Pollutant/Parameter Category	Principle of Operation	Upper Detection Limit ²							
Total VOC	Photoionization Detector	10 ppb	40 ppm or 3 ppm						
PM _{2.5}	Laser Scattering	1 ug/m³	1000 ug/m ³						
Wind Direction	Sonic Anemometer	N/A	N/A						
Wind Speed	Sonic Anemometer	N/A	N/A						
Relative Humidity	Solid State	N/A	N/A						
Barometric Pressure	Solid State N/A		N/A						
Temperature	Solid State	N/A	N/A						

	T	Ά	В	L	Е	2	<u>2-</u> '	1		
 _	 _	0	0		_	_	: ::	_	- 4	

2.2 VOC CANISTER SAMPLING

EPA Method TO-15 will be utilized to collect and analyze all summa canister samples. Sampling canisters will be provided pre-cleaned and batch certified by Enthalpy Analytical (Enthalpy), a NELAC accredited laboratory. Canister sampling will be conducted using an Entech Instruments Silonite[™] CS1200E Passive Canister Sampler or equivalent.

The Canary-S system is capable of integrating a passivated stainless-steel canister triggering system that will automatically open the valve of the canister to collect a pre-determined time integrated (1-hour) canister sample based on preset TVOC thresholds. A properly sized critical orifice will be placed at the inlet of the canister to ensure the sample is collected for a predetermined time period. An electronic vacuum gauge is integrated into the canister valve to ensure the integrity of the sample. The vacuum gauge pressure for each system will be included in the sensor payload to the data platform and can be continuously monitored to ensure that the sample media is still valid. If the sample media is compromised an automated alert will be sent out to designated Montrose and Suncor personnel to have the canister replaced. Typically, the canister can maintain a vacuum that does not compromise the sample integrity for 3 months, though this can vary from unit to unit.

¹ This information was provided by the manufacturer spec sheet

2.3 **AQMESH POD**

The AQMesh Pod is a solar powered air quality monitoring system manufactured by AQMesh, a United Kingdom company. It is equipped with a variety of sensors, cellular communication, and powered via a solar panel and battery. A multitude of units can be deployed to create a network of real-time, localized data focusing on air guality and meteorological measurements. The sensors contained in the units are capable of measuring SO2, CO, NO, NO2, and H2S. The AQMesh Pod principle of operation is outlined in the Table 2-2 and provides a sampling frequency of five (5) minute. A complete datasheet summarizing the specifications of the AQMesh Pod can be found in the Appendix B of this Quality Assurance Project Plan (QAPP).

	AQMesh Pod Sp		
Air Pollutant/Parameter Category	Principle of Operation	Lower Detection Limit ²	Upper Detection Limit ²
SO ₂	Electrochemical Sensor	5 ppb	100 ppm
со	Electrochemical Sensor	50 ppb	1000 ppm
NO	Electrochemical Sensor	1 ppb	20 ppm
NO ₂	Electrochemical Sensor	1 ppb	20 ppm
H₂S	Electrochemical Sensor	1 ppb	100 ppm

TARI F 2-2

2.4 **AEROQUAL AQM 65**

The "AQM 65" is a ground powered or solar/battery powered air quality monitor manufactured by Aeroqual, a New Zealand company. The AQM 65 is a fully integrated air monitoring station offering near reference levels of performance. The units will be configured to measure the following parameters:

	TABLE 2-3
ЭM	65 Specifications

AQM 65 Specifications			
Air Pollutant/Parameter Category	Principle of Operation	Lower Detection Limit ³	Upper Detection Limit ³
Total VOC	Photoionization Detector	50 ppb	30 ppm
SO ₂	Electrochemical Sensor	9 ppb	10 ppm
CO	Electrochemical Sensor	50 ppb	25 ppm

² This information was provided by the manufacturer spec sheet

³ This information was provided by the manufacturer spec sheet

Air Pollutant/Parameter Category	Principle of Operation	Lower Detection Limit ³	Upper Detection Limit ³
NO	Semiconductor Sensor	3 ppb	500 ppb
NO ₂	Electrochemical Sensor	3 ppb	500 ppb
H ₂ S	Electrochemical Sensor	12 ppb	10 ppm
PM _{2.5}	Laser Scattering	1 ug/m ³	1000 ug/m ³
Temperature	Various	N/A	N/A
Relative Humidity	Various	N/A	N/A

The AQM 65 offers measuring criteria pollutants to concentrations similar to a traditional monitoring station. The AQM 65 comes with a fully integrated calibration system which enables automatic scheduling of validation checks using two gas cylinders. Automatic validations are a key piece to the improved data quality over lower costs instruments. The system automatically zeros itself with the built-in zero air scrubber nightly for $PM_{2.5}$ and every minute for gaseous compounds to mitigate drift issues these sensors typically experience.

The AQM 65 contains different sensor modules that were designed specifically based on the strengths and weaknesses of the sensor selected. A sensor module can incorporate flow control orifices, solenoids, scrubbers, humidity equalizer, and additional electronics to account for sensor drift, noise, humidity, and cross interference. The system is temperature controlled and maintained at 30°C +/- 0.2°C to remove any temperature sensitivity that typical sensors exhibit. Active sampling starts with the stainless steel inlet on top of the enclosure. The inlet is lined with an inert material that ensures no target pollutant is lost. From there sample air is passed through a PTFE filter that removes particulate, protecting the sensors and extending their life. A sampling manifold delivers air to each module independently. Air is drawn continuously by a brushless DC pump. This pump works together with the flow control orifice in each module to deliver a precise flow of air to the sensor. Knowing the exact flow rate allows a higher degree of confidence in the measurement. Exhaust gas is released well away from the inlet to ensure no impact on the inlet sample. The AQM 65 is designed to then be calibrated in the field to minimize system downtime and adjust for any sensor degradation. The analyzer brochure can be found in Appendix B.

2.5 DATA PLATFORM

The AirSense data management platform, developed by SensibleIOT, handles traditional air monitoring data and air sensor data. The AirSense system is a cloud-based system that ingests data, performs quality control, and calibrates air sensor data. AirSense handles 1-second data (fixed or mobile), any pollutant or parameter, and offers intuitive navigation to view and display data for public and technical applications.

For the program staff at Suncor and Montrose, Air Sense's dashboard provides a summary of the operational status of the network. This backend data platform provides features not available on the community site. This backend site gives Montrose access to additional features that Suncor personnel and the public will not, such as instrument and sensor settings, calibration and data

correction features, and data invalidation. Figure 2.2 and 2.3 provide a screenshot of the backend and community dashboard, respectively. For each location, AirSense provides a display showing near real-time readings and a map of the monitor location.

FIGURE 2.1 SCREEN SHOT OF THE AIRSENSE DASHBOARD

FIGURE 2.2 SCREEN SHOT OF THE PUBLIC DASHBOARD

3.0 QUALITY ASSURANCE QUALITY CONTROL

3.1 KNOWN-LIMITATIONS AND INTERFERENCES

Montrose plans to integrate three (3) of the AQM 65 Sampling Stations into the network. These stations would be collocated with one (1) of the Canary-S and AQMesh Ambient Sampling Stations. This collocation will allow for a multivariable regression between the AQM 65 and Canary-S units. This regression can then be applied to all of the monitors in the network and in doing so will provide higher data quality across the monitoring network. This collocation will also allow for a scaling correction factor to be applied between the AQM65 and the AQMesh Pod. This scaling correction will also be applied to all of the monitors in the network to provide more accurate data if deemed necessary.

Temperature and relative humidity are known to affect the electrochemical sensors being used and could influence data quality. The AQMesh monitors collect sensor temperature and ambient relative humidity data and correct for these interferences via algorithms that were developed during extensive global comparisons with reference data.

Additionally, some of the sensors being used for specific compounds that are being monitored for in this program have known cross sensitivity to other compounds. Some significant cross sensitivities include ozone causing a response on the NO₂ sensor, this program mitigates this issue by using an ozone filter on the face of the NO₂ sensor. Similarly, the SO₂ sensor can have a response caused by the presence of H₂S. Again, the SO₂ sensor has a built-in filter to mitigate the H₂S interference. The SO₂ sensor has additional interference from NO₂. The AQMesh data processing algorithms incorporate any data correction for these interferences.

Sensors like the Canary-S and AQMesh Pod, are also known to produce data that is noisier than traditional reference method quality ambient air monitoring equipment. To mitigate this issue the AirSense data management system will average the data over 1-hour to improve the signal-to-noise of the instrument readings.

The AQM 65 units mitigate many of these issues by additional sensor module design. The typical temperature and humidity issues are mitigated by maintaining the temperature of the sensor modules at 30° C +/- 0.2°C and humidity equalizers or dryers. Each individual sensor module is designed specifically for weaknesses of the sensor itself. For example, the SO₂ module includes the sensor plus: a flow control orifice, solenoid, component scrubbers, humidity equalizer, and electronics. These additional components compensate for sensor drift, noise, humidity and cross interference, and greatly reduce the minimum detection limit in real world conditions. The scrubber works by analyzing the gas sample for SO₂, which will provide a response dictated by SO₂ and any present interferences. Then the sample is run through a selective scrubber that only removes SO₂ from the sample gas, the difference between the SO₂ reading before and after the scrubber is then reported as the true SO₂ concentration.

3.2 DEPLOYMENT PROCEDURES

The following procedures will be followed prior to deploying the sensors to monitoring locations. Any sensors not meeting all the requirements outlined below will be brought back to Montrose's facility and a technician will attempt to resolve the issue at the guidance of the manufacturer. If the issue cannot be resolved by Montrose the instrument will be returned to the manufacturer.

3.2.1 Sensor Deployment/Maintenance Log

Upon completion of the sensor pre-delivery checks, the sensors will be received by Montrose and a sensor deployment/maintenance log initiated. The log will be stored on Montrose's server which is only accessible by Montrose personnel and will contain the following minimum information:

- Sensor serial number
- Sensor model number
- Sensor batch ID
- AirSense key
- Results of the initial sensor calibration check out procedures
- Deployment location, date and time
- Sensor replacement schedule
- History of notes, issues and maintenance procedures organized by date

3.2.2 Canary-S PID Gas Calibration

A calibration will be performed on all Canary-S TVOC sensor during the initial deployment effort using zero air, 1 ppm, and 2 ppm isobutylene certified cylinders. These gas values were chosen based on expected ambient concentrations. A gas hood is installed over the top of the PID sensor and gas is flowed at approximately 0.5 L/min across the sensing portion of the PID face.

Minimum Criteria ⁴		
3*Standard Deviation <=50 ppb		
±10% of span bottle value		
±25% of bottle value		
±25% of bottle value		

TABLE 3-1 MINIMUM PID GAS QUALITY CONTROL CRITERIA

Based on the response of the analyzer to each concentration of gas a linear fit will be applied to the data to produce a slope and intercept that is applied to the raw pollutant parameter. PID detectors historically have a logarithmic response and only a small region of the sensors full range is considered linear. In the case of the PID that Lunar Outpost uses, this linear range is from 0 to 3 ppm. Once the units are deployed to the field some minor adjustments are made to the unit's baseline reading, this adjustment is considered when evaluating if the calibration met the minimum criteria outlined above.

3.2.3 AQMesh Pod Criteria Pollutant and H₂S Gas Calibration

A calibration will be performed on the CO, NO, NO₂, SO₂, and H₂S sensors during the initial deployment effort using certified gas cylinders. A gas hood is installed over the top of the sensor and gas is flowed at approximately 0.5 L/min across the sensing portion of the sensor's

⁴ Based on 1-minute readings

face. The tables below provide the approximate gas concentrations that will be used for initial calibrations. These gas values were chosen based on expected ambient concentrations.

TABLE 3-2 MINIMUM CO GAS QUALITY CONTROL CRITERIA

CO Gas Concentration Input	Minimum Criteria⁴
1 ppm Precision	3*Standard Deviation <=60 ppb
0 ppm	±10% of Mid-Gas
1 ppm	±50% of Input
10 ppm	±50% of Input

TABLE 3-3

MINIMUM NO GAS QUALITY CONTROL CRITERIA

NO Gas Concentration Input	Minimum Criteria⁴
0.5 ppm Precision	3*Standard Deviation <=60 ppb
0 ppm	±25% of Mid-Gas
0.5 ppm	±50% of Input
2 ppm	±50% of Input

TABLE 3-4 MINIMUM NO2 GAS QUALITY CONTROL CRITERIA

NO ₂ Gas Concentration Input	Minimum Criteria⁴
0.5 ppm Precision	3*Standard Deviation <=60 ppb
0 ppm	±25% of Mid-Gas
0.5 ppm	±50% of Input
2 ppm	±50% of Input

TABLE 3-5 MINIMUM H₂S GAS QUALITY CONTROL CRITERIA

H ₂ S Gas Concentration Input	Minimum Criteria⁴	
0.5 ppm Precision	3*Standard Deviation <=40 ppb	
0 ppm	±25% of Mid-Gas	
0.5 ppm	±50% of Input	
2 ppm	±50% of Input	

MINIMUM SO ₂ GAS QUALITY CONTROL CRITERIA		
SO ₂ Gas Concentration Input	Minimum Criteria⁴	
0.5 ppm Precision	3*Standard Deviation <=40 ppb	
0 ppm	±25% of Mid-Gas	
0.5 ppm	±50% of Input	
2 ppm	±50% of Input	

TABLE 3-6

Based on the response of the analyzer to each concentration of gas a linear fit will be calculated to the data to produce a slope and intercept that will be applied to the pollutant parameter that is receiving the scaling correction if 50% of the minimum criteria is exceeded. Once the units are deployed to the field some minor adjustments are made to the unit's baseline reading, this adjustment is considered when evaluating if the calibration met the minimum criteria outlined above.

3.2.4 AQM 65 Gas Validation

The AQM 65 is supplied with an internal calibration system, the AirCal 8000, that includes a NIST traceable mass flow meter and controller allowing for dynamic dilution of calibration gas standards. The AirCal 8000 only provides space for two (2) calibration gases and a multipoint calibration will be performed on all sensors during the initial deployment effort. The onboard zero air scrubber will allow for nightly automated zeroing of the instrument. Due to the AirCal 8000 only having the ability to integrate two (2) gas cylinders and certain gases are not stable when mixed in a compressed gas cylinder, weekly guality control checks of the CO, SO₂, NO, and H₂S will occur. CO, SO₂, and NO will be mixed in one bottle, and H2S will be in the second bottle. Monthly quality control checks of the TVOC and NO₂ will be conducted during the gas validation of the collocated Canary-S and AQMesh monitors. No gain or offset correction is made during these validation checks. Quarterly calibrations of the instrument will occur in accordance with the procedures linked to section 3.2.4.

FIGURE 3.1 AQM 65 INTERNAL CALIBRATION SYSTEM

TABLE 3-7			
MINIMUM AQM 65 GAS VALIDATION CRITERIA			

Gas Concentration Input	Minimum Criteria
SO ₂ , NO, NO ₂ , and H ₂ S Zero	±0.015
CO Zero	±0.200
TVOC Zero	±0.100
CO, SO ₂ , NO, NO ₂ , TVOC, and H ₂ S Span	±10% of Span

3.2.5 Wind Direction Siting

The sonic anemometers on each Canary-S monitor have a North orientation marker that will be aligned to magnetic north using a compass. The field personnel sites the monitor during the initial deployment and then confirms this reading during each subsequent monthly calibration checks. An acceptable check will verify that the North siting is within 10 degrees. If the verification check fails, the monitor will be adjusted and the data since the last verification check will be flagged on the data platform.

3.2.6 Co-Location Study

The near-FEM AQM 65 units used in this program will be collocated with each other prior to deployment in the field to determine system-to-system variability. During this time the data will be collected by the AirSense data platform. The minimum criteria that must be met before these monitors will be deployed in the field are listed in Table 3-8 below.

Parameter	Minimum Criteria*	
Data Completeness	>95%	
AQM 65 System-to-System Agreement PM _{2.5} (Absolute Error from Average)	+/- 3 μg/m3	
AQM 65 System-to-System Agreement H ₂ S, SO ₂ , NO, and NO ₂ (Absolute Error from Average)	+/- 0.02 ppm	
AQM 65 System-to-System Agreement CO (Absolute Error from Average)	+/- 0.1 ppm	

TABLE 3-8MINIMUM NEAR-FEM CO-LOCATION CRITERIA

* Based on 60 min averaged data

Canary-S and AQMesh monitors will be received by Montrose in batches and collocated with a near-FEM AQM 65 unit. The co-location study will be conducted for a period of one week. During that time data will be collected by the AirSense data platform. The collected data will be summarized in the deployment/maintenance log. The purpose of this collocation is to demonstrate that the Canary-S and AQMesh units provide data within a reasonable error to the AQM 65 units and show the unit-to-unit agreement. This unit-to-unit agreement provides confidence in the data from the Canary-S and AQMesh units that will not be collocated with AQM 65 units during community monitoring. Before being deployed at a location, the sensors must meet the minimum criteria found in Table 3-9. One of the parameters that will be used for evaluating the co-location is root mean square error (RMSE). RMSE is the standard deviation of the residuals. Residuals are a measure of how far from the regression line data points are. In other words, it tells you how concentrated the data is around the line of best fit.

Parameter	Minimum Criteria*
Data Recovery	>95%
Error to near-FEM PM _{2.5} (RMSE)	<10 µg/m3
Canary-S Sensor-to-Sensor Agreement PM _{2.5} (Absolute Error from Average)	+/- 3 μg/m3
Error to near-FEM H ₂ S, SO ₂ , NO, and NO ₂ (RMSE)	<0.10 ppm
AQMesh Sensor-to-Sensor Agreement H ₂ S, SO ₂ , NO, and NO ₂ (Absolute Error from Average)	+/- 0.08 ppm
Error to near-FEM CO (RMSE)	<0.20 ppm

 TABLE 3-9

 MINIMUM SENSOR-NEAR-FEM CO-LOCATION CRITERIA

Parameter	Minimum Criteria*
AQMesh Sensor-to-Sensor Agreement CO (Absolute Error from Average)	+/- 0.15 ppm

* Based on 60 minute averaged data

3.2.7 FEM Co-Location Study

The near-FEM AQM 65 units used in this program were collocated with the Welby (AQS ID: 080013001) regulatory Colorado Department of Public Health and Environment (CDPHE) air monitoring station prior to deployment in the field to better understand the error between the AQM 65 and FEM monitors. During this time the AQM 65 data was collected by the AirSense data platform, and the FEM data was provided by CDPHE.

Due to the number of studies done collocating the AQM 65 with reference monitors for CO, NO_2 , and $PM_{2.5}$ and the fact that no CDPHE sites monitor for H_2S , SO_2 was the main driver for selecting a collocation site. Three CDPHE sites in Denver monitor for SO_2 : Welby, La Casa, and CAMP. For accessibility reasons Welby was chosen. The study began on June 2, 2021 and completed on June 9, 2021. Compounds that the Welby station and the AQM 65 both monitor for are CO, NO_2 , and SO_2 . The RMSE value from this study are report in table 3-10 below. Though no criteria was set prior to this study the results suggest the "Near-Reference" claim of the AQM 65 units is fair.

MEEDI TO AQUI OU COLLOOATION NECCETO		
Compound	RMSE (ppm)	
CO	0.096	
NO	0.011	
NO	0.000	
NO ₂	0.002	
03	0.000	
SO ₂	0.000	

TABLE 3-10WELBY VS AQM 65 COLLOCATION RESULTS

3.3 ON GOING QUALITY ASSURANCE QUALITY CONTROL

The following procedures will be followed on an on-going basis to assure the quality of collected data.

Due to the nature of electrochemical sensors used in this program, adverse atmospheric conditions such as extreme humidity, extreme temperature, and other conditions can affect a monitor's ability to provide reliable data. Since these conditions are uncontrollable, it is not possible to mitigate their effects. Data invalidated due to adverse atmospheric conditions are excluded from data completeness calculations.

3.3.1 Data Platform Alerts

The AirSense data platform will alert Montrose and Suncor according to the table below. These alerts will trigger investigation and corrective actions by Montrose. Alerts will be in the form of an immediate e-mail notification.

Parameter	Minimum Criteria	
Range Check	-2 to 100 ppm or μg/m ³	
Flatline Check	Constant value for more than	
	60 1-minute data points	
Communication Failure Alerts	When no data is received for	
	more than 60 minutes emails	
	alerts will be issued at a	
	frequency of once per 6 hours	

TABLE 3-11 PLATFORM ALERT CRITERIA

3.3.2 Daily Quality Assurance Checks

Montrose will review the morning reports generated as outlined in section 4.2.1 to verify that the deployment criteria in Table 3-4 is met.

MINIMUM DEPLOYMENT CRITERIA Minimum Criteria Parameter >95% Data Recovery

Daily Maximum Value

TABLE 3-12

If any of the criteria laid out in Table 3-4 fail the following procedures will be followed depending on the parameter in question and a back-up sensor will be ready to replace a failed sensor at all times.

As Necessary

Data Recovery: If the sensor fails to meet the data recovery minimum of 95% over 24 hours a technician will inspect the unit. Each day is defined as the 24-hour period spanning from midnight to midnight. Morning reports are received at approximately 9 am MT each day for review. The inspection will consist of checking for any loose connections within the unit that may be causing a power failure and that 12 volts of power is being generated by the solar panel and can be traced back to the barrel jack plugged in the device. If the technician cannot determine the cause of the data recovery, the unit will be returned to the manufacturer for a more in-depth review.

Maximum Value Criteria: If any of the hourly averages for the parameters being monitored for exceed the levels identified in Table 3-5 below Montrose personnel will review the lower temporal resolution data collected during that period to determine if any instrument issues may have occurred.

MONTROSE REVIEW CRITERIA			
Parameter Montrose Data Review Lev			
NO, NO ₂	0.100 ppm		
SO ₂ , H ₂ S	0.075 ppm		
<u> </u>	2 nnm		
CO	3 ppm		
ТУОС	1 ppm		
PM_{2.5} 35 ug/m ³			

TABLE 3-13 MONTROSE REVIEW CRITERIA

3.3.3 Monthly Canary-S and AQMesh Quality Assurance Checks

Montrose will visit each monitoring location monthly and run through validation checks on each of the Canary-S and AQMesh units. Similar to the initial calibration, a gas hood is installed over the top of the sensor and gas is flowed at approximately 0.5 L/min across the sensing portion of the sensor's face. Each of the initial calibration concentration levels will be reintroduced to the sensors. Tables in section 3.1.3 provide the minimum criteria that must be met for the data collected since the previous calibration or validation check was conducted.

If any of the individual monitors fail their quality assurance check the data collected since the previous calibration will be post-processed using an average calibration results of the validation results before and after the sampling period and the data will be flagged and a description of the failed QA will be noted. The instrument will then be inspected for any maintenance issues and the manufacturer will be contacted. If a reason for the failed calibration cannot be found or the issue is irreparable then the sensor will be replaced.

If all of the units in the network fail the validation check then the raw data collected from the monitors (this is the data that was not run through the multivariable regression) will be postprocessed with the using an average calibration results of the validation results before and after the sampling period and the data will be flagged and a description of the failed QA will be noted. The AQM65 units will then have a validation check done on the units to determine if the near-FEM data being supplied to the regression is valid. Additional data review will be conducted to determine if the regression is properly correcting the data or if adjustments to the regression need to be made.

During these monthly visits the instruments will be blown out with canned air to remove any accumulated dust from inside the units. The unit will also be visually inspected for any damage or signs of tampering with the unit.

The AQMesh system has an automated built-in quality assurance check that will flag data as described in Table 3-13. Some of these codes will invalidate data and the data will be unrecoverable.

TABLE 3-14
AQMESH AUTOMATED QUALITY ASSURANCE CODES

Reading Value	Sensor State	Description	Long Term Effects
Estimated reading	Reading	No Issue detected	
Estimated reading	Rebased	Indicates the rebasing period after it has completed and values recalculated.	After rebasing completed "Rebasing" is replaced with "Rebased" and pointers reset to ensure data is overwritten with calculated values.
-1000	Not Fitted	Sensor or component not fitted.	Coded flag in data feeds as there is no data to view.
-999	Stabilizing	Either when the POD has just been moved to a new location or manually instigated via server.	Values are redacted as they cannot be relied upon during this 2-day period and will remain non-viewable.
-998	Rebasing	Typically, this is a 2-day period where local variables are calculated for use in the AQMesh algorithm are found.	During the rebasing period the coded flag will remain, however upon completion of this process, valid data will be reinstated – Data will need to be re-retrieved for this period, so API pointers are reset.
-997	Optimizing	When a pod is power-cycled for more than a hour i.e. Maintenance or power failure.	Values are redacted as they cannot be relied upon during this 1-hour period and ill remain as non- viewable.
-996	Failed	The system has detected that the sensor has failed.	Data classified as having a sensor fail is redacted & will remain as non- viewable.
-995	Cross Gas Error	If a sensor fails which is relied upon for the removal of interferences on another sensor, data from the reliant sensor becomes invalid.	Data will be redacted & remain non- viewable until compensating sensor is replaced and producing good results.
-994	No Data	Data points where the instrument has not recorded a reading.	Coded flag in data feeds as there is no data to view.
-993	Destabilized	The system has detected that the sensors output\stability may be compromised due to odd fluctuations in temperature and pressure.	Readings for the prescribed period are redacted and are non-viewable until the condition have normalized.
-992	Extreme Environment	Following intensive testing of all electrochemical sensors we have determined the combination of extreme in climate in which the electrochemical sensor do not provide consistent outputs. As	Data classified as within the extreme ranges of the environment will be redacted and will remain non- viewable.

Reading Value	Sensor State	Description	Long Term Effects
		such precise and accurate measurements is not possible.	

The most common error that is expected to be observed in the program is the "Extreme Environment" code which may occur when the units approach their environmental operating limits, which are -4 to 104 Fahrenheit (F) and 5 to 95% relative humidity. The internal temperature of the unit, where the sensors are housed, can reach temperature higher then ambient temperature. In the event that a unit goes into Extreme Environment mode, typically the unit has to drop in temperature to about 85 F before the unit will begin providing valid data again. To mitigate this issue the units will be installed underneath of the solar panel and/or with the unit facing north to block direct sunlight.

3.3.4 AQM Quality Assurance Checks and Calibration

Aeroqual recommends the maintenance schedule in Table 3-13. A detailed description of the procedures that will take place to complete these maintenance tasks can be found at: <u>https://support.aeroqual.com/Wiki/Maintenance Schedule</u>

Service activity	Service frequency	
Change filter on gas inlet	Initially 4 weeks, then every 4-12 weeks. Later	
	this can be modified to suit local conditions	
	and data quality objectives.	
Check flow of gas inlet	Initially 4 weeks, then every 4-12 weeks. Later	
	this can be modified to suit local conditions	
	and data quality objectives.	
Adjust flow of gas inlet	As required following gas inlet flow check	
Replace gas pump	Every 12 to 18 months, or when flow rate can't	
	be set correctly	
Check flow of gas modules	As required following gas inlet flow check	
Check gas module for leaks	As required following gas module flow check	
Remove gas module	As required and described below	
Replace gas module	As required and described below	
Field calibrate (zero and span) gas	At least every 3 months (four times per year)	
module	but no more than once per week.	
Change filter for particle monitor	Initially 4 weeks, then every 4-12 weeks. Later	
	this can be modified to suit local conditions	
	and data quality objectives.	
Check flow of particle monitor	Initially 4 weeks, then every 4-12 weeks. Later	
	this can be modified to suit local conditions	
	and data quality objectives.	
Adjust flow of particle monitor	Adjust as required following inlet flow check	
Check particle monitor for leaks	Every 3 months	
Check zero of particle monitor using	Every 3 months	
external filter		

TABLE 3-15AEROQUAL AQM65 MAINTENANCE SCHEDULE

Service activity	Service frequency
Check zero of particle monitor using auto cycle (AQM)	Every 3 months
Check laser and detector	Every month
Clean sharp cut cyclone	Every 3 months
Replace pumps in particle monitor	Every 12 to 18 months, or when flow rate can't
	be set correctly
Clean compressor cassette	As required
Refill compressor with gas	As required or when directed by Aeroqual
	technical support.
Factory calibrate particle monitor	Every 24 months (2 years)

3.3.5 Sensor Replacement Schedule

The electrochemical sensors and PID in the AQM 65, AQMesh, and Canary-S degrade over time. The lifespan of the sensors vary and is dependent on preventative maintenance and level of pollutant exposure. Degradation can be indicative of failed monthly (Canary-S/AQMesh) or weekly (AQM 65) data validation. The manufacturers specify the sensor lifespan for these systems is greater than 24 months. Each sensor will be removed from the location and replaced when degradation characteristics are observed or at a minimum after 24-months of operation. After replacement, the sensors will be transferred to Montrose and the Co-Location study will be repeated. All QA/QC checks as outlined for initial deployment will be repeated and documented in the deployment/maintenance log.

4.0 REPORTING

A morning system report will be issued by the AirSense data platform and e-mailed to the principle parties at Suncor and Montrose. The system report will have at a minimum, the following 24-hour data summary of each parameters listed below. An example system report can be found in the Appendix.

- Sensor ID
- Minimum value
- Maximum value
- Average value
- Percent data capture

Suncor Energy (U.S.A.) Inc. Quality Assurance Project Plan

APPENDIX A Lunar Outpost Canary-S Specification Sheet

Gen 4 Revised: 12/17/19

I. Introduction

The Canary-S is a continuous solar powered air quality and meteorological monitoring system designed to be class leading in size, reliability, and flexibility. With cellular communication these systems can be placed nearly anywhere to provide measurements on particulate matter, targeted gases, and meteorological data. Multiple units can be deployed to create a network of real-time data integrated into existing customer databases or into Lunar Outpost's platform.

II. Mechanical

A. Physical Properties

See Table 1.

B. Mounting Options

The Canary enclosure allows mounting to either tripods, large diameter poles, or DIN rails.

C. Certifications and Environmental

 Dimension
 Value

Dimension	Value
Width	8.6 in
Height	10.0 in
Depth	6.7 in
Weight	~4.3 lbs

The Canary enclosure meets the following certifications: UL508A, UL 50, CSA-C22.2 No. 14, NEMA 1,2,3,3R,4,4X,5,6,6P,12,13, UL94V-0 Flame rating, and UL746C-F1 UV and submersion testing. The original enclosure before modification had an IP68 rating. The rating after modification is reduced due to the designed addition of vents for airflow, but the unit maintains protections against inclement weather when mounted correctly. The enclosure is UV-Stabilized Polycarbonate and the units have undergone extensive testing in a variety of outdoor environments to ensure robust functionality. Canary units have an operational temperature range of -20F to 140F (-28.89C to 60C).

III. Power

Table 2: Power characteristics of air quality monitor

Battery		Charging	
Chemistry	Lithium-Ion	Solar Panel	12V DC (20W)
Capacity	8000 mAh	Solar Charge Controller	12V DC
Run-time without	120 hours*	Wall Charger	120V AC (US std) input
power input			to 12V DC output
	*under proper conditions		(24W)

IV. Communication and Data

Canary-S units communicate over commercial cellular bands and data is transmitted to a secure cloud. From the cloud, the data can be routed to the customer's database or Lunar Outpost's custom database. The connection to the cloud is database agnostic, allowing integration with a variety of commercial or custom databases. Table 3 and 4 outline the cellular data connection specifications of two of the cellular modems used in the Canary units.

A. Cellular Communication

Table 3: 2G/3G	Cellular Data	Connection	Specifications
100100120/00	ocharan Data	connection	opeenjieationis

Network	2G/3G HSPA/GSM	2G/3G HSPA/GSM Cellular Modem Ublox S			
HSPA Bands	850/1900 MHz	GSM Bands	850/1900 MHz		
	Table 4: 4G Cellular Data Connection Specifications				
Network	Ublox SARA-R410M				
LTE Bands	3, 4, 5, 8, 12, 13, 20, 28	2G/3G Bands	None		

B. Data

The Canary-S allows for data integration into the platform of choice and puts data ownership and control in the customer's hands. JSON formatting is used for the data unless otherwise requested by the customer. Micro-SD capability allows for data-backups and redundancy storing up to 7 years of data locally.

- Integrate to client database: Canary-S data can be routed to a customer's existing database or routed to multiple databases simultaneously.
- Lunar Outpost's custom database: Lunar Outpost's custom database is an effective, user friendly platform that allows customers to view, interact with, analyze, and download data.

113	013		
		Table 5: Base Unit Sensor Specs	5
	Property	Range	Resolution
	PM2.5	0~1000 μg/m³	1 μg/m³
	PM10	0~1000 μg/m³	1 μg/m³
	Internal Temperature	-40 to 85 °C (-40 to 185°F)	+/-1.5 °C (2.7 °F)
	Internal Humidity	0-100% RH	+/-3%
	Atmospheric Pressure	300-1250 hPa (mbar)	+/-1.7 hPa (mbar)

V. Sensors

Table	6:	Optional	Sensor	Specs
10010	<u> </u>	optional	0011001	opees

Property	Range	Max Resolution Limit
Total VOC (tVOC)	0 to 50 ppm	1 ppb
Ozone (O₃)	0 to 20 ppm	15 ppb
NO ₂	0 to 20 ppm	15 ppb
СО	0 to 1000 ppm	4 ppb
CO ₂	0 to 5% volume	1 ppm
H ₂ S	0 to 100 ppm	5 ppb
SO ₂	0 to 100 ppm	5 ppb
CH ₄	0 to 50000 ppm	100 ppm
External Temperature	-40 to 80°C (-40 to 176°F)	+/-0.3 °C (0.54 °F)
External Humidity	0-100% RH	+/-2%
Wind Speed	0-75 m/s (0-168mph)	0.01 m/s
Wind Direction	0-360 deg	+/- 2 deg

For more information: info@lunaroutpost.com

wind

Model 91000 *Response* ONE[™] Ultrasonic Anemometer

ŧ

1

0

The YOUNG **Response ONE**[™] Ultrasonic Anemometer is designed to reliably measure wind speed and direction. The **Response ONE**[™] is wind tunnel calibrated and will accurately measure wind speeds up to 70 m/s (156 mph). The high sampling rate of the Model 91000 provides for fast response to changing wind conditions and wind data may be updated as fast as 10 times per second. An easy-to-use Windows setup program is provided with each sensor. The program allows the user to customize device settings such as sampling rates and communication parameters.

The compact IP-66 rated design features durable, corrosion-resistant construction. A variety of useful standard serial output formats are provided including SDI-12, NMEA, and ASCII text. The sensor installs on readily available 1 inch (IPS) pipe and wiring connections are made in a convenient weather-proof junction box. Special connectors and cables are not required. The Model 91000 is available in black or white.

Ordering Information

Specifications

Wind Speed	Range:	0 – 70 m/s (156 mph)
	Resolution:	0.01 m/s
:	Starting Threshold:	<0.01 m/s
	Accuracy:	±2% or 0.3 m/s (0 – 30 m/s)
		±3% (30 – 70 m/s)
	Response Time:	· · · · · ·
Wind Directio	n Azimuth Range:	0 - 360 degrees
	Resolution:	
9	Starting Threshold:	-
	0	±2 degrees
	Response Time:	÷
	nesponse nine.	<0.25 5600105
Electronic Cor	nnass Bande:	0 – 360 degrees
1000000000	Resolution:	-
		± 2.0 degrees
	Accuracy.	± 2.0 degrees
Serial Output (s	electable) Interface:	RS-232, RS-485/422, SDI-12
	,	NMEA, SDI-12, ASCII (polled or continuous)
		1200, 4800, 9600, 19200 and 38400
		m/s, knots, mph, kmph
0	utput Update Rate:	
0	uipui opuale nale.	0.1 10 10 112
Power	Voltage:	10 – 30 VDC
	U	7 mA @ 12 VDC typical, 80 mA max
	••••••	
General	Protection Class:	IP66
	EMC Compliance:	FCC Class A digital device, IEC Standard 61326-1
		22.0 cm high x 13.5 cm wide
		0.5 kg (1.1 lb)
	Shipping Weight:	
Oner	ating Temperature:	
•	ovable Bird Spikes:	

The **ResponseONE**[™] is compatible with a broad range of data loggers and displays, including the YOUNG Model 06206 Marine Wind Tracker.

MODEL

C ϵ Complies with applicable CE directives.

R.M. YOUNG COMPANY 2801 Aero Park Drive Traverse City, Michigan 49686 USA TEL: (231) 946-3980 FAX: (231) 946-4772 E-mail: met.sales@youngusa.com Web Site: www.youngusa.com Copyright © 2017 R.M.Young Company. Specifications subject to change without notice. Printed in USA. 2/17 ResponseONE™ is a trademark of the R.M. Young Company Suncor Energy (U.S.A.) Inc. Quality Assurance Project Plan

APPENDIX B AQMesh Pod Specification Sheet

AQQAesh

Technical specification

AQMesh | Technical specification

Gas algorithm V5.3, PM algorithm V3.0h*

GASES

Sensor	Туре	Units	Range ^{#1}	LOD	LOC ^{#2}	Precision ^{#3}	Accuracy ^{#4}
NO	Electrochemical	ppb or µg/m³	0-20,000 ppb	<1 ppb	<5 ppb	>0.9	1 ppb
NO2	Electrochemical	ppb or $\mu g/m^3$	0-20,000 ppb	<1 ppb	<5 ppb	>0.85	4 ppb
NOx	Electrochemical	ppb or µg/m³	0-40,000 ppb	<2 ppb	<10 ppb	>0.9	4 ppb
03	Electrochemical	ppb or µg/m³	0-20,000 ppb	<1 ppb	<5 ppb	>0.9	5 ppb
СО	Electrochemical	ppb or µg/m³	0-1,000,000 ppb	<50 ppb	<50 ppb	>0.8	20 ppb
SO2	Electrochemical	ppb or µg/m³	0-100,000 ppb	<5 ppb	<10 ppb	>0.7	20 ppb
H2S	Electrochemical	ppb or µg/m³	0-100,000 ppb	<1 ppb	<5 ppb	>0.7	1 ppb
TVOC#11	Electrochemical	ppm	0-2.5 ppm	<0.1 ppm	<0.25 ppm	>0.95	0.05 ppm
CO2	NDIR	ppm or mg/m ³	0-5,000 ppm	<1 ppm	<1 ppm	>0.9	30 ppm

PARTICLES

Sensor	Туре	Units	Range ^{#1}	LOD	Precision ^{#3}	Accuracy ^{#4}
PM1 ^{#5}	Optical particle counter	µg/m³	0-100,000 μg/m³	0 µg/m³	>0.9	5 µg/m³
PM2.5#5	Optical particle counter	µg/m³	0-150,000 μg/m³	0 µg/m³	>0.9	5 μg/m³
PM4 ^{#5}	Optical particle counter	μg/m³	0-225,000 μg/m³	0 µg/m³	>0.9	5 μg/m³
PM10 ^{#5}	Optical particle counter	µg/m³	0-250,000 μg/m³	0 µg/m³	>0.85	5 μg/m³
PM_Total ^{#5}	Optical particle counter	µg/m³	0-350,000 μg/m³	0 µg/m³	>0.85	5 μg/m³

ADDITIONAL SENSORS

Sensor	Туре	Units	Range ^{#1}	LOD	Precision ^{#3}	Accuracy ^{#4}
Pod temperature	Solid state	°C or °F	-20°C to 100°C	0.1°C	>0.9	2°C
Pressure	Solid state	mb	500 to 1500 mb	1 mb	>0.9	5 mb
Humidity	Solid state	%	0 to 100%	1% RH	>0.9	5% RH
Noise ^{#6}	Omnidirectional mic	dB	35 to 100 dB SPL	20 Hz – 20 kHz	>0.8	1 dB

Gas algorithm V5.3, PM algorithm V3.0h*

WIND SPEED & DIRECTION SENSOR

Sensor	Туре	Units	Range	Resolution	Accuracy ^{#7}
Wind speed	Solid state	ms ⁻²	0 to 30 ms ⁻²	0.01 ms ⁻²	2%
Wind direction	Solid state	° degrees	0 to 359 °	1°	2 °

SENSOR LIFE

Sensor Type	Expected lifespan	Notes
Electrochemical	2 years#8	See AQMesh standard operating procedure
NDIR	5 years	See AQMesh standard operating procedure
Solid state	5 years	See AQMesh standard operating procedure
Omnidirectional microphone	5 years	See AQMesh standard operating procedure
Optical particle counter	2 years#8	Maintenance dependent on application & settings ^{#9}

POWER

Option	Expected lifespan	Notes
External DC	>5 years	9 – 24V DC
Lithium metal battery pack ^{#10}	>24 months	Dependent on measurement strategy & pod spec
External high capacity battery pack ^{#10}	>60 months	Dependent on measurement strategy & pod spec
NiMH rechargeable battery pack	>4 months	Dependent on measurement strategy & pod spec
Solar power pack	>5 years	Change internal lead-acid battery every 24 months

AQMesh | Technical specification

Gas algorithm V5.3, PM algorithm V3.0h*

PHYSICAL

Enclosure	ABS, protection IP65
Environmental	Temperature range:-20°C to +40°C Humidity range: 15 to 95% RH
Mounting	Pod supplied with mounting bracket for walls / posts
Approx. size & weight	Length: 170mm Width: 220mm Height (excl antenna): 250mm Height (incl antenna): 430mm Weight: 2 – 2.7kg

DATA ACCESS & COMMUNICATIONS

Communication	Raw data sent to server by cellular network. Worldwide coverage 4G/5G LTE Cat M1/NB1 with 2G fallback
Measurement period	Variable, from 1 minute to 1 hour
Transmission frequency	Variable, from 5 minutes to 12 hour intervals
Server software	Web browser based Processing of sensor output to give reading Database storage on secure server
Data access	Tables, graphs Data download Multi-user access Password controlled Optional API data access
Product designs and specifications are subject change without prior notice. The user is responsible for determining the su of the product. *h denotes when used with optional heated in PM monitoring	tability global co-location comparison testing against certified a 12-month warranty. reference. #4 Best "out of the box" accuracy without any local standard operating procedure. scaling (calibration against reference

#1 From sensor manufacturer's specification. This data was derived from independent lab tests. Standard test conditions are 20°C and 80% RH and in the absence of interfering gases. Tested range is-30°C to +30°C.

#2 Readings provided below this level, however due to interferences the level of uncertainty is greater than at higher levels of the target pollutant. #5 Mass estimation based on standardisation of particle shape and density. Range is based on optical range of 0.3-30µm particle size.

#6 Noise measures average noise and peak noise. Peak noise is the highest recorded value over the gas reporting interval while average noise is calculated using all noise samples over the same period.

#7 Wind speed and direction stated accuracy is at 12ms-2

#11 Values are based on testing for Ethylene Oxide (EO) and correction factors will affect these results

Suncor Energy (U.S.A.) Inc. Quality Assurance Project Plan

APPENDIX C Aeroqual AQM65 Specification Sheet

aeroqual

AQM65

Near reference real-time monitor for multiple gases plus particulate fractions

The AQM 65 is a fully integrated, temperature controlled air quality monitoring station that delivers 'near reference' levels of performance in real-time for multiple gases, particulates and environmental parameters.

Continuously measure air pollutants including ozone O₃, NO₂, NO_x, CO, SO₂, VOC, H₂S, CO₂, TSP, PM₁₀, PM_{2.5}, PM₁, noise and meteorological parameters.

AQM 65 shown with Optional integrated Calibration system

What is it?

- Proven long term performance in extreme climates with purpose-built enclosure and advanced temperature and humidity control
- Reduce site visits using two-way communications

 remotely troubleshoot, upgrade software, change settings, and calibrate
- Plug in all your devices noise, weather, reference monitors – to the AQM 65 and view data in one software dashboard
- Enables automatic scheduling of calibrations with optional integrated calibration system
- Respond in real-time via configurable email / SMS alerts

What can it measure?

• Multiple gases, dust fractions, wind, weather and noise

Who is it for?

- Industrial operators who need a cost-effective and robust solution to manage and control dust and gas emissions from site activities within regulatory or permitted limits:
 - Industrial perimeter monitoring
 - Oil and gas facilities
 - Quarry and mine operators
 - Port and bulk handling authorities
 - Waste managementsites
- Regulatory authorities who need to fill the gaps in the regulatory monitoring networks
- Environmental consultants and Researchers who want defensible data without the usual time and hassle of air monitoring projects
 - Research and consultancy projects
 - Environmental impact assessments
 - Short term hot spot monitoring
 - Roadside air monitoring

Specifications | AQM 65

Gas module	Range	Resolution	Noise Zero; Span % of reading	Lower Detection Limit (2ơ)	P	recision	Linearity (% of FS	Zara
Ozone O3	0-500 ppb	0.1 ppb	1 ppb; 1 %	1 ppb		of reading or 2 ppb	1.5 %	1 ppb; 0.2 %
Nitrogen dioxide NO ₂	0-500 ppb	0.1 ppb	1 1 %	1 ppb	2 %	of reading or 2 ppb	1%	2 ppb; 1 %
Carbon Monoxide CO	0-25 ppm	0.001 ppm	0.02 ppm; 1 %	0.04 ppm		of reading).050 ppm	1%	0.02 ppm; 0.2 %
Sulfur Dioxide SO ₂	0-10000 ppb	1 ppb	4 ppb; 2 %	9 ppb	3 %	of reading or 9 ppb	1%	1 ppb; 0.2 %
Nitrogen Oxides NO _X	0-500 ppb	0.1 ppb	1 ppb; 1 %	1 ppb	3 %	of reading or 3 ppb	1%	1 ppb; 0.2 %
Hydrogen Sulfide H ₂ S	0-10000 ppb	0.1 ppb	6 ppb; 2 %	12 ppb		of reading r 12 ppb	1%	1 ppb; 0.6 %
Carbon Dioxide CO ₂	0-2000	1 ppm	5 ppm; 1 %	10 ppm		of reading 10 ppm	2 %	1 ppm; 0.6 %
VOC (Low range)	0-500 ppb	0.1 ppb	1 ppb 1 %	1 ppb	2 %	of reading or 2 ppb	1%	1 ppb; 1 %
VOC (High range)	0-30 ppm	0.01 ppm	0.1 ppm; 1 %	0.05 ppm		of reading 0.05 ppm	2 %	0.1 ppm; 1 %
Particle module		zes	Range	Accurac		Resolut	tion	Lower Detectable Limit (20)
Nephelometer		M _{2.5} , PM ₁₀ STSP	0 to 60,000 $\mu\text{g/m}^3$	±(2 µg/m³ + reading		0.1 µg/	′m³	1 µg/m³
Profiler (Optical Particle Counter)	<u>ANI</u>	M₂.5, PM10 ⊇ TSP articulate Co	PM ₁ 200 μg/m ³ PM ₂₅ 2000 μg/m ³ PM ₁₀ 5000 μg/m ³ TSP 5000 μg/m ³ punts: 0.3, 0.5, 0.7, 1.0, 1	±(5 µg/m ³ + reading 2.0, 3.0, 5.0, 10 r)	0.1 μg/		1 μg/m³ 00 counts/L)
System specifications								
Control system	Embeddeo Operating		(Intel Celeron® N3350,	1.1GHz, dual cor	e, 4GB I	RAM, 32GB SS	SD hard dri	ive), Debian Linux
Communications ¹		-	et (LAN) Optional mo	dem: Cellular IP	3G HSP	A or 4G LTE		
Software	Optimize: performar Plus: Stay	Reduce site ice remotely one step ahe	ose a plan that is right visits and improve dat ead with enhanced fea to learn more about Ae	a quality by ma tures for viewing	g and sh			
Data logging			years data storage)					
Averaging period			min, 20 min, 30 min, 1 l	hr, 2 hr, 4 hr, 8 h	r, 12 hr, 1	24 hr		
Power requirements ²	90 - 264 \	′ac, 47 - 63 ⊦	Hz Typical draw: 100 W	/ (depends on c	onfigura	ation and amb	ient tempe	erature)
Enclosure	Outer: IP6 foam insul		inum skin with solar re	flective coating	Inner: 4	0 - 50 mm (1.6	6 - 2 ") laye	er of cross-linked PE
Gas sampling system	Inlet: Teflo	n, glass-coat	ed stainless-steel Pum	p: 12 V brushles	s DC dia	aphragm		
PM sampling system	selection Pump: 12 \	/ brushless [36 cm (14.1 inches) hea OC diaphragm hear-forward scattering				107	PM_{25} or PM_1 size
Dimensions ³			W x 280 D mm (51.6 H					5 mm (25.8 ")
Weight⁴	< 30 Kg							
Operating range	-35 °C to +	-50 °C (-31 °I	= to 122 °F)					
Mounting	Pole, tripo	d and wall m	ounting brackets inclu	ided				
47mm sample filter ⁵			e loading analysis					
Factory integrated sensors ⁵	Gill WindS	onic (ultrasc					et One MS	O (weather transmitter),
Compatible tested sensors		8 (sound lev					ne E-BAM	PLUS (Beta-Attenuation
Compatible tested sensors ¹ 4G LTE not available in all ²⁴ Configuration used for por heater on. ³ Dimensions are for enclosu	BSWA 30 Mass Moni markets. ower and weig	8 (sound leve tor) ht calculatior	el meter), Met-One BC Is: base unit, nephelome	-1060 (black cal ter, PM ₁₀ sharp c	rbon ma ut, mode	onitor), Met-O	ne E-BAM	PLUS (Beta-Atten

³ Dimensions are for enclosure. PM sampling inlet with cyclone adds 360 mm (14.17") to total height. ⁵ Optional

Suncor Energy (U.S.A.) Inc. Quality Assurance Project Plan

APPENDIX D Example Morning System Report

Air	Sense																														
							Sund	cor: 2	4 Hou	r (8/5/	2021	12:00:	00 AM	- 8/6/2	021 12	2:00:00	MA C	Mounta	in Star	dard T	'ime)										
C 16 a	Instrument		Last			02	03																		09				Max	Min	Ave
Site	insuument	Sensor Updated	Complete	AM	MA	AM	AM	AM	AM	AM	AM	AM	AM	AM	PM	PM	PM	PM	PM	PM	PM	PM	PM	PM	PM	PM	AM	Reading	WIIT	Ave	
	Adams City High School	PM2_5	08/06/21 07:59	1500	42.3	42.6	41.5	41.4	41.8	41.6	41.8	42.2	41.8	41.8	40.7	40.2	41.4	42.3	42.2	41.9	39.9	41.0	42.1	40.7	41.2	44.6	42.7	42.5	55.6	35.7	41.8
	(Mon_Dutch_005) (CM3)	TVOC	07.05		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

THIS IS THE LAST PAGE OF THIS DOCUMENT

For questions, please use Table 1-3 to contact the individual that would be most prepared to answer your question.

