

## 2023 Q1 SUMMA CANISTER REPORT COMMERCE CITY NORTH DENVER COMMUNITY AIR MONITORING NETWORK COMMERCE CITY, COLORADO

Prepared For:

Suncor Energy (U.S.A.) Inc. 5801 Brighton Boulevard Commerce City, CO 80022

Prepared By:

Montrose Air Quality Services, LLC 990 W 43<sup>rd</sup> Avenue Denver, CO 80211

Document Number: **085AA-022555-RT-321** 

Report Period: January 30, 2023 (Q1, 2023)

Report Date: March 13, 2023





### **TABLE OF CONTENTS**

| SEC | CTION PAGE                                                                                                                                                                                                                         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXE | ECUTIVE SUMMARY4                                                                                                                                                                                                                   |
| 1.0 | INTRODUCTION5                                                                                                                                                                                                                      |
|     | 1.1 Air Monitoring Site Description5                                                                                                                                                                                               |
| 2.0 | METHODS9                                                                                                                                                                                                                           |
|     | 2.1 Air Sampling Methods9                                                                                                                                                                                                          |
|     | 2.2 Screening Health Risk Assessment Methods                                                                                                                                                                                       |
| 3.0 | RESULTS                                                                                                                                                                                                                            |
|     | 3.1 Summary of Air Sampling Results                                                                                                                                                                                                |
|     | 3.3 Uncertainty Evaluation                                                                                                                                                                                                         |
| 4.0 | PROGRAM CHANGES                                                                                                                                                                                                                    |
| LIS | T OF APPENDICES                                                                                                                                                                                                                    |
| Α   | SAMPLE CHAIN OF CUSTODIES                                                                                                                                                                                                          |
| В   | AIR SAMPLING RESULTS AND SCREENING RISK ASSESSMENT                                                                                                                                                                                 |
| LIS | T OF TABLES                                                                                                                                                                                                                        |
| 1-1 | CCND MONITORS AND SUMMA CANISTER SAMPLING LOCATIONS8                                                                                                                                                                               |
| 1-2 | SUMMA CANISTER REFERENCE LOCATIONS9                                                                                                                                                                                                |
| 1-3 | SELECTED COMPOUNDS MEASURED IN SUMMA CANISTERS10                                                                                                                                                                                   |
| 1-4 | JANUARY 30, 2023 (Q1) PLANNED AIR SAMPLE DETECTION SUMMARY – CCND MONITORING LOCATIONS (ALL RESULTS IN PARTS PER BILLION BY VOLUME)13                                                                                              |
| 1-5 | JANUARY 30, 2023 (Q1) PLANNED AIR SAMPLE DETECTION SUMMARY – REFERENCE LOCATIONS (ALL RESULTS IN PARTS PER BILLION BY VOLUME)14                                                                                                    |
| 1-6 | JANUARY 30, 2023 (Q1) CCND SUMMA CANISTER SCREENING RISK ANALYSIS: COMPOUND-SPECIFIC HAZARD QUOTIENTS FOR PLANNED AIR SAMPLES – CCND MONITORING SITES                                                                              |
| 1-7 | JANUARY 30, 2023 (Q1) CCND SUMMA CANISTER SCREENING RISK ANALYSIS:<br>COMPOUND-SPECIFIC HAZARD QUOTIENTS FOR PLANNED AIR SAMPLES –<br>REFERENCE SITES                                                                              |
| LIS | T OF FIGURES                                                                                                                                                                                                                       |
| 1-1 | MAP OF TEN CCND MONITOR LOCATIONS6                                                                                                                                                                                                 |
| 1-2 | MAP OF THREE NON-CCND COMMUNITY MONITORING (URBAN AND RURAL BACKGROUND) SITES: E470/I25 (JUNC), BRIGHTON FIRE DEPARTMENT (BFD) AND COLORADO DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT (CDPHE) CAMP AIR MONITORING STATION (CAMP) |

| CCND Co   | mmunity  | Monitoring |
|-----------|----------|------------|
| January 3 | 30, 2023 | (Q1 2023)  |

| FIGURE 1-3 | JANUARY 30, 2023  | (Q1) - HAZARD | <b>INDEX BY AIF</b> | R SAMPLING LOC | CATION |
|------------|-------------------|---------------|---------------------|----------------|--------|
| FOR ALL F  | PLANNED AIR SAMPL | FS            |                     |                | 18     |

#### **EXECUTIVE SUMMARY**

In response to feedback received by Suncor Energy (U.S.A.) Inc. (Suncor) through community engagement conducted in the fall of 2020, Suncor voluntarily committed to developing a continuous, near real-time air monitoring program to gain insight into air quality for neighborhoods in the vicinity of the Suncor refinery in Commerce City, Colorado. Montrose Environmental Group - Air Quality Services, LLC (Montrose) was contracted by Suncor to deploy, operate, and maintain the network in the Commerce City and North Denver (CCND) neighborhoods. Air monitoring was accomplished through three separate technical approaches: (1) continuous, near real-time monitoring for the following analytes: carbon monoxide (CO), sulfur dioxide (SO<sub>2</sub>), hydrogen sulfide (H<sub>2</sub>S), nitrogen oxide or nitric oxide (NO), nitrogen dioxide (NO<sub>2</sub>), particulate matter (PM<sub>2.5</sub>), and total volatile organic compounds (VOCs); (2) periodic collection and laboratory analysis for the presence of specific VOCs from 6-liter evacuated stainless steel ("Summa") canisters; and (3) periodic real-time air monitoring throughout entire neighborhoods using a mobile monitoring van to detect presence of specific VOCs. An "analyte" is a material that a measuring device is designed to detect and measure. It may be a chemical gas, an airborne particle, or other type of material. This report details approach number two, the periodic collection and laboratory analysis of Summa canister air samples and a screening health risk analysis. Continuous, near real-time air monitoring and mobile monitoring van data are presented in separate reports.

Planned air samples were collected during the first quarter of 2023. A total of 13 planned air samples (1-hour) were collected by field technicians. Ten samples were collected from locations within the CCND neighborhoods; an additional three samples were collected from non-CCND community monitoring reference sites (urban and rural background) that were chosen for the sampling campaign. All air samples were collected using Summa canisters and sent to an accredited laboratory for analysis of a broad suite of VOCs in accordance with the United States Environmental Protection Agency (USEPA) methods TO-15 and TO-14A.

Health scientists from CTEH, LLC (CTEH®) (a subsidiary company of Montrose) performed a screening-level human health risk assessment based on the data collected by Montrose. A screening-level assessment uses the most health-conservative assumptions about exposure and chemical toxicity. This risk assessment was conducted to determine whether measured concentrations of individual or cumulative (combined risk) VOCs could potentially cause acute (short-term) adverse health effects. The health risk calculations described in this report were performed per federal and state guidance. The risk assessment resulted in the following overall findings:

- All measured individual and cumulative air concentrations of VOCs in planned air samples collected on January 30, 2023, at CCND and reference locations were below their respective acute health-based reference levels.
- All measured concentrations of VOCs are likely to be without an appreciable risk of adverse acute health effects, even for sensitive sub-populations.

#### 1.0 INTRODUCTION

In response to feedback received by Suncor Energy (U.S.A.) Inc. (Suncor) through community engagement conducted in the fall of 2020, Suncor voluntarily committed to developing a continuous, near real-time air monitoring program to gain insight into air quality for neighborhoods in the vicinity of the Suncor refinery in Commerce City, Colorado. Montrose Environmental Group - Air Quality Services, LLC (Montrose) was contracted by Suncor to deploy, operate, and maintain the network in the Commerce City and North Denver (CCND) neighborhoods. Air monitoring was accomplished through three separate technical approaches: (1) continuous, near real-time monitoring for the following analytes: carbon monoxide (CO), sulfur dioxide (SO<sub>2</sub>), hydrogen sulfide (H<sub>2</sub>S), nitrogen oxide or nitric oxide (NO), nitrogen dioxide (NO<sub>2</sub>), particulate matter (PM<sub>2.5</sub>), and total volatile organic compounds (VOCs); (2) periodic collection and laboratory analysis for the presence of specific VOCs from Summa canisters; and (3) periodic real-time air monitoring throughout neighborhoods using a mobile monitoring van to detect presence of specific VOCs. An "analyte" is a material that a measuring device is designed to detect and measure. It may be a chemical gas, an airborne particle, or other type of material. This report details approach number two (Summa canister sampling and analysis). The continuous near real-time air monitoring and mobile monitoring van data are presented in separate reports. Air monitoring, sampling, and analysis from all three approaches were conducted in accordance with the Quality Assurance Project Plan (QAPP) and are available online at www.ccndair.com/documents.

#### 1.1 Air Monitoring Site Description

Ten Summa canister samples were collected from the CCND neighborhoods within a three-mile radius of the refinery operations. The monitor locations are shown in Figure 1-1 and described in Table 1-1; they were selected based on the following criteria:

- Historical wind pattern data
- Proximity to the refinery and non-refinery sources
- Existing infrastructure, as well as site access and safety
- Community feedback

An additional three planned air samples were collected at non-CCND community monitoring sites (reference locations), in both urban and rural locations (Figure 1-2 and Table 1-2). These locations were at the E470-I25 Junction (JUNC), the Brighton Fire Department (BFD), and the Colorado Department of Health and Environment (CDPHE) CAMP air monitoring station (CAMP). The JUNC and BFD monitoring locations were chosen as rural background locations about 13 miles north of the CCND network. The CAMP location was selected as a representative urban location that has comparative data collected by CDPHE<sup>1</sup>.

<sup>1</sup> CDPHE describes CAMP as Urban in many reports. As an example, this description can be found on page 6 of the <u>2020 Ambient Air Monitoring Network Assessment</u>:

https://www.colorado.gov/airquality/tech\_doc\_repository.aspx?action=open&file=2020\_CO\_5yr\_Network\_Assessment.pdf



FIGURE 1-1
MAP OF TEN CCND MONITOR LOCATIONS

FIGURE 1-2

MAP OF THREE NON-CCND COMMUNITY MONITORING (URBAN AND RURAL BACKGROUND) SITES: E470/I25 (JUNC), BRIGHTON FIRE DEPARTMENT (BFD) AND COLORADO DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT (CDPHE) CAMP AIR MONITORING STATION (CAMP)



**TABLE 1-1**CCND MONITORS AND SUMMA CANISTER SAMPLING LOCATIONS

|             |                                        |                      | Distance<br>from<br>Refinery<br>Center |                                                             |
|-------------|----------------------------------------|----------------------|----------------------------------------|-------------------------------------------------------------|
| Location ID | Secondary ID                           | GPS Coordinates      | (miles)                                | Cross Streets                                               |
| CM1         | Rose Hill Elementary<br>School         | 39.80164, -104.90882 | 2.0                                    | E. 58 <sup>th</sup> Ave. & Oneida<br>St., Commerce City     |
| CM2         | Suncor Refinery<br>Business Center     | 39.79623, -104.95727 | 0.70                                   | Brighton Blvd. & York St., Commerce City                    |
| СМЗ         | Adams City High<br>School              | 39.82736, -104.90193 | 2.9                                    | E. 72 <sup>nd</sup> Ave. & Quebec Pkwy, Commerce City       |
| CM4         | Adams City Middle<br>School            | 39.82893, -104.93499 | 1.9                                    | Birch St. & E. 72 <sup>nd</sup><br>Ave., Commerce City      |
| CM5         | Central Elementary<br>School           | 39.81457, -104.91928 | 1.7                                    | Holly St. & E. 64 <sup>th</sup><br>Ave., Commerce City      |
| CM6         | Focus Points Family<br>Resource Center | 39.78436, -104.95663 | 1.4                                    | Columbine St. & 48 <sup>th</sup> Ave., Denver               |
| СМ7         | Kearney Middle<br>School               | 39.80888, -104.91545 | 1.7                                    | E. 62 <sup>nd</sup> Ave. &<br>Kearney St.,<br>Commerce City |
| CM8         | Monroe                                 | 39.8156, -104.94503  | 0.85                                   | Monroe St. & E. 64 <sup>th</sup><br>Ave., Denver            |
| CM9         | 48 <sup>th</sup> and Race              | 39.78455, -104.96264 | 1.7                                    | East 48 <sup>th</sup> Ave. &<br>Race St., Denver            |
| CM10        | Alsup Elementary<br>School             | 39.82026, -104.93663 | 1.3                                    | East 68 <sup>th</sup> Ave. & Birch St., Commerce City       |

TABLE 1-2
SUMMA CANISTER REFERENCE LOCATIONS

| Location ID | Secondary ID | GPS Coordinates      | Distance<br>from<br>Refinery<br>Center<br>(miles) | Cross Streets                                         |
|-------------|--------------|----------------------|---------------------------------------------------|-------------------------------------------------------|
| CAMP        | Denver CDPHE | 39.75111, -104.98766 | 4.2                                               | Champa St. & N.<br>Broadway, Denver                   |
| JUNC        | E470/I25     | 39.98614, -104.98468 | 12.8                                              | E. 160 <sup>th</sup> &<br>Washington St.,<br>Thornton |
| BFD         | Brighton     | 39.98512, -104.86665 | 13.1                                              | Havana St. & Havana<br>Way, Brighton                  |

#### 2.0 METHODS

#### 2.1 Air Sampling Methods

Planned air samples were collected during the first quarter of 2023 on January 30, 2023. Entech Instruments Silonite™ CS1200E Passive Canister Samplers connected to 6-liter chemically inert stainless steel ("Summa") canisters were used to collect samples over a 1-hour period. The Summa canisters were cleaned and blanked for use according to laboratory standard operating procedures. Planned air samples were collected by a field technician by manually opening and closing the Summa canister's regulator valve during a time when real-time instruments indicated total VOC concentrations to be less than the 1-ppm trigger level. All sampling and quality assurance procedures were performed by Montrose. All Summa canister field sampling followed the Standard Operating Procedure (SOP) provided in the QAPP.

The canister samples were shipped to Enthalpy Analytical in Durham, North Carolina. The United States Environmental Protection Agency (USEPA) Compendium Method TO-14A "Determination of Volatile Organic Compounds (VOCs) in Ambient Air using Specially Prepared Canisters with Subsequent Analysis by Gas Chromatography" and TO-15 entitled "Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)" were followed for both sampling and analysis methodology. A total of 59 analytes were selected for analysis in this assessment, based on the typical suite of compounds monitored for in urban and industrial areas, accounting for laboratory analysis capabilities (Table 1-3).

**TABLE 1-3**SELECTED COMPOUNDS MEASURED IN SUMMA CANISTERS

| Ethylene       | Isopentane             | 3-Methylpentane   | 3-Methylheptane  | 2,4-<br>Dimethylpentane                       |
|----------------|------------------------|-------------------|------------------|-----------------------------------------------|
| Acetylene      | 1-Pentene              | 1-Hexene          | Nonane           | 2,3-                                          |
| Ethane         | Pentane                | 1,3-Butadiene     | 3-Ethyltoluene   | Dimethylpentane<br>1,2,3-<br>Trimethylbenzene |
| Propylene      | Isoprene               | Heptane           | 2-Ethyltoluene   | 1,3,5-<br>Trimethylbenzene                    |
| Propane        | Trans-2-Pentene        | 2-Methylhexane    | Decane           | 2,2,4-<br>Trimethylpentane                    |
| Isobutane      | Cis-2-Pentene          | Toluene           | Ethylbenzene     | Tetrachloroethene                             |
| 1-Butene       | 2,2-<br>Dimethylbutane | 3-Methylhexane    | m-Diethylbenzene | 1,2,4-<br>Trimethylbenzene                    |
| Butane         | Cyclopentane           | Methylcyclohexane | p-Diethylbenzene | Methylcyclopentane                            |
| Trans-2-Butene | Cyclohexane            | Hexane            | Undecane         | 2,3,4-<br>Trimethylpentane                    |
| Cis-2-Butene   | 2-Methylpentane        | 2-Methylheptane   | Dodecane         | 2,3-Dimethylbutane                            |
| m-/p-Xylenes   | o-Xylene               | 4-Ethyltoluene    | Benzene          | Carbon disulfide                              |
| n-Octane       | Isopropylbenzene       | n-Propylbenzene   | Naphthalene      |                                               |

#### 2.2 Screening Health Risk Assessment Methods

CTEH® conducted a screening-level public health risk assessment, consistent with federal and state risk assessment guidelines, to determine whether exposure to the detected concentrations of individual or cumulative (combined) analytes in the air could potentially pose acute (short-term) health impacts. A tiered approach to the risk assessment was used. This approach involves one or more iterative steps (or tiers) being performed in which health risks are calculated and evaluated multiple times. In most cases, risk assessors cannot know exactly the level of chemical exposure experienced by individuals or communities. Therefore, the first tier involves use of exposure assumptions that are health-conservative. This means that data reflecting maximum exposure potential are plugged into the risk calculations. These are worst-case scenarios that typically represent exposure conditions higher than would be reasonably expected. Such calculations are very simple and assume a person is constantly exposed to the highest measured chemical level. If the resulting risk values indicate the lack of likely adverse health effects under these worst-case conditions, then the risk assessment is complete. However, if the risk values suggest a potential for adverse health effects, then a second tier of risk calculations are performed, but this time using more detailed assumptions about exposure that are still simple

CCND Community Monitoring January 30, 2023 (Q1 2023)

representations of the real world but are more realistic than the first tier worst-case assumptions. Each successive tier represents a more complete characterization of exposure variability and/or uncertainty that requires a corresponding increase in calculation complexity and scientific level of effort.

The first tier of this risk assessment process is called a screening-level risk assessment. The conservative assumptions used for this level of risk calculation typically represent exposure conditions higher than would be reasonably expected. As such, an exceedance of an acceptable risk level (defined below) does not necessarily indicate that adverse health effects are likely. The Agency for Toxic Substances and Disease Registry (ATSDR) states, "when health assessors find exposures higher than the MRLs (ATSDR's specific health-based reference levels), it means that they may want to look more closely at a site"<sup>2</sup>. In other words, screening-level findings of an estimated exposure to a VOC being higher than a health-based reference level do NOT indicate an actual likelihood of adverse effects but do indicate a need to move to a second tier of analysis and refine the risk assessment process with more realistic detail to determine if an actual risk exists that needs to be mitigated.

The screening-level risk assessment reported here includes calculated risks from exposure to individually measured chemicals as well as exposure to all measured chemicals at once (cumulative). For individual chemicals, an acute health risk value was calculated as the exposure concentration (EC) divided by the chemical-specific federal or state established acute Reference Levels (RL) (Equation 1). The result is referred to as the hazard quotient (HQ). Estimates of EC were derived from the 1-hour average concentrations of each analyte. Using the average for the EC conservatively assumes that a hypothetical maximally exposed individual occupies the sampling location area and breathes the 1-hour detected concentration continuously for an hour up to multiple days (an acute exposure). The RLs used to calculate the HQs are previously established exposure levels below which no adverse effect in humans is expected. If available, RLs adopted by the Colorado Department of Public Health and Environment (CDPHE) were selected for use within this assessment and include ATSDR acute minimum risk levels (MRL), California EPA Office of Environmental Health Hazard Assessment (OEHHA) acute risk levels. and Texas Commission on Environmental Quality (TCEQ) acute exposure screening levels (acute ESL) or Reference Value (ReVs)<sup>3</sup>. If the analyte was not listed by CDPHE, CTEH® followed a federal and state recommended hierarchy for selection of health-based reference levels4.

Acute HQs were calculated as follows:

Eq. 1 – Hazard Quotient (HQ) Equation

HQ= EC/RL

Where:

HQ= Hazard Quotient

EC= 1-hour average air concentration

RL= Acute Health-based Reference Level (ATSDR, Cal EPA OEHHA, and TCEQ)

<sup>&</sup>lt;sup>2</sup>https://www.atsdr.cdc.gov/minimalrisklevels/#:~:text=The%20ATSDR%2C%20in%20response%20to,minimal%20risk%20levels%2 0(MRLs).

<sup>3</sup> https://drive.google.com/file/d/1P2KEvu0MFiyzQAOQtjQUclqR-WGh1bEX/view

<sup>&</sup>lt;sup>4</sup> https://www.epa.gov/sites/default/files/2015-11/documents/hhmemo.pdf

CCND Community Monitoring January 30, 2023 (Q1 2023)

Health risks from potential cumulative exposures to all detected analytes were calculated by adding together each individual analyte's HQ calculated for a given sampling location. This sum of all the individual HQs is called a Hazard Index (HI). Adding together all the HQs is also a very health-conservative approach because it assumes that all the measured analytes exert an adverse effect on the body in a similar manner, which is rarely the case.

An HQ or HI of less than or equal to one is an indication that the estimated exposure is likely to be without an appreciable risk of adverse health effects, even for sensitive sub-populations. The potential for adverse health effects increases as HQ or HI increase above one, but it is not known by how much. HQ or HI values of greater than one would prompt a second-tier risk assessment beyond the screening-level assessment.

According to the USEPA and ATSDR, the federal agencies that establish these reference levels, these values "are set below levels that, based on current information, might cause adverse health effects in the people most sensitive." This is because RLs are based on observed toxicity in human or animal studies with an added safety factor to account for uncertainties in the toxicity data. For example, ATSDR identified the lowest observed adverse effect level (LOAEL) for acute exposure to benzene as 10,200 parts per billion (ppb), based on a study of mice exposed six hours per day for six days. ATSDR then applied a combined safety factor of 300 to derive the final RL to account for several uncertainties, including differences between mice and humans and for sensitive individuals. Therefore, it is scientifically incorrect to assume that all real-world exposures to a chemical at levels higher than a RL will likely result in an adverse effect.

The USEPA also has established values for use in emergency situations, termed Acute Exposure Guideline Levels (AEGLs). Unlike health-based reference levels that can be thousands of times below exposure levels where adverse effects are observed, AEGL values are levels at which different acute adverse health effects may be anticipated to occur. According to USEPA, "AEGL-1 represent exposure levels that could produce mild and progressively increasing but transient and non-disabling odor, taste, and sensory irritation or certain asymptomatic, non-sensory effects. With increasing airborne concentration above each AEGL, there is a progressive increase in the likelihood of occurrence and the severity of effects described for each corresponding AEGL [i.e., AEGL-2 or AEGL-3]." The AEGL-1 60-minute value, if available for the applicable compound, was provided for comparison purposes because it is more precautionary (than AEGL-2 or AEGL-3) as the AEGL-1 level reflects potential health impacts that are reversible upon cessation of exposure.

#### 3.0 RESULTS

#### 3.1 Summary of Air Sampling Results

A total of 13, one-hour planned air samples were collected during the first quarter of 2023. Ten samples were collected from CCND sampling locations and three were collected from reference locations. Summary details are presented in Tables 1-4 and 1-5, and additional details are available in Appendix A.

**TABLE 1-4**JANUARY 30, 2023 (Q1) PLANNED AIR SAMPLE DETECTION SUMMARY – CCND MONITORING LOCATIONS (ALL RESULTS IN PARTS PER BILLION BY VOLUME)

| Compound Name          | Cas No      | # Samples | # Detections | Range of Detections (ppb) |
|------------------------|-------------|-----------|--------------|---------------------------|
| 1-Butene               | 106-98-9    | 10        | 8            | 0.0500 - 2.9000           |
| 1-Hexene               | 592-41-6    | 10        | 0            | < 0.0340 - < 0.0430       |
| 1-Pentene              | 109-67-1    | 10        | 1            | 0.0650                    |
| 1,2,3-Trimethylbenzene | 526-73-8    | 10        | 0            | < 0.0320 - < 0.0410       |
| 1,2,4-Trimethylbenzene | 95-63-6     | 10        | 10           | 0.0320 - 0.0760           |
| 1,3-Butadiene          | 106-99-0    | 10        | 2            | 0.0380 - 0.0420           |
| 1,3-Diethylbenzene     | 141-93-5    | 10        | 0            | < 0.0310 - < 0.0390       |
| 1,3,5-Trimethylbenzene | 108-67-8    | 10        | 0            | < 0.0280 - < 0.0350       |
| 1,4-Diethylbenzene     | 105-05-5    | 10        | Ö            | < 0.0340 - < 0.0430       |
| 2-Ethyltoluene         | 611-14-3    | 10        | Ö            | < 0.0330 - < 0.0420       |
| 2-Methylheptane        | 592-27-8    | 10        | 5            | 0.0490 - 0.0670           |
| 2-Methylhexane         | 591-76-4    | 10        | 7            | 0.0390 - 0.1000           |
| 2-Methylpentane        | 107-83-5    | 10        | 8            | 0.1600 - 0.3500           |
| 2,2-Dimethylbutane     | 75-83-2     | 10        | 2            | 0.0810 - 0.0890           |
|                        | 540-84-1    | 10        | 9            |                           |
| 2,2,4-Trimethylpentane |             | 10        | 0            | 0.0480 - 0.0900           |
| 2,3-Dimethylbutane     | 79-29-8     |           |              | < 0.0340 - < 0.0440       |
| 2,3-Dimethylpentane    | 565-59-3    | 10        | 1            | 0.0810                    |
| 2,3,4-Trimethylpentane | 565-75-3    | 10        | 0            | < 0.0340 - < 0.0440       |
| 2,4-Dimethylpentane    | 108-08-7    | 10        | 2            | 0.0950 - 0.0960           |
| 3-Ethyltoluene         | 620-14-4    | 10        | 1            | 0.0420                    |
| 3-Methylheptane        | 589-81-1    | 10        | 10           | 0.0350 - 0.1600           |
| 3-Methylhexane         | 589-34-4    | 10        | 6            | 0.1100 - 0.2000           |
| 3-Methylpentane        | 96-14-0     | 10        | 8            | 0.1000 - 0.3200           |
| 4-Ethyltoluene         | 622-96-8    | 10        | 0            | < 0.0410 - < 0.0530       |
| Acetylene              | 74-86-2     | 10        | 10           | 0.4800 - 1.4000           |
| Benzene                | 71-43-2     | 10        | 9            | 0.2300 - 0.5000           |
| Butane                 | 106-97-8    | 10        | 10           | 2.5000 - 5.0000           |
| Carbon disulfide       | 75-15-0     | 10        | 0            | < 0.0260 - < 0.0330       |
| Cis-2-Butene           | 590-18-1    | 10        | 1            | 0.0950                    |
| Cis-2-Pentene          | 627-20-3    | 10        | 1            | 0.0490                    |
| Cyclohexane            | 110-82-7    | 10        | 8            | 0.0960 - 0.2100           |
| Cyclopentane           | 287-92-3    | 10        | 5            | 0.0740 - 0.1000           |
| Decane                 | 124-18-5    | 10        | 3            | 0.0460 - 0.0590           |
| Dodecane               | 112-40-3    | 10        | 1            | 0.0950                    |
| Ethane                 | 74-84-0     | 10        | 6            | 11.0000 - 63.0000         |
| Ethylbenzene           | 100-41-4    | 10        | 10           | 0.0420 - 0.1100           |
|                        | 74-85-1     | 10        | 8            | 1.5000 - 11.0000          |
| Ethylene               |             |           | 9            |                           |
| Heptane                | 142-82-5    | 10        |              | 0.0770 - 0.1800           |
| Hexane                 | 110-54-3    | 10        | 9            | 0.2500 - 0.4800           |
| Isobutane              | 75-28-5     | 10        | 7            | 0.8600 - 1.8000           |
| Isopentane             | 78-78-4     | 10        | 9            | 0.7300 - 1.7000           |
| Isoprene               | 78-79-5     | 10        | 0            | < 0.0350 - < 0.0440       |
| Isopropylbenzene       | 98-82-8     | 10        | 0            | < 0.0260 - < 0.0330       |
| m,p-Xylenes            | 179601-23-1 | 10        | 6            | 0.1300 - 0.2500           |
| Methylcyclohexane      | 108-87-2    | 10        | 8            | 0.0620 - 0.1500           |
| Methylcyclopentane     | 96-37-7     | 10        | 9            | 0.1100 - 0.3000           |
| n-Octane               | 111-65-9    | 10        | 8            | 0.0540 - 0.0940           |
| Naphthalene            | 91-20-3     | 10        | 2            | 0.0480 - 0.0830           |
| Nonane                 | 111-84-2    | 10        | 2            | 0.0650 - 0.0760           |
| o-Xylene               | 95-47-6     | 10        | 10           | 0.0380 - 0.0930           |
| Pentane                | 109-66-0    | 10        | 9            | 0.7400 - 1.7000           |
| Propane                | 74-98-6     | 10        | 8            | 5.9000 - 12.0000          |
| Propylbenzene          | 103-65-1    | 10        | Ō            | < 0.0270 - < 0.0340       |
| Propylene              | 115-07-1    | 10        | 8            | 0.2200 - 0.7200           |
| Tetrachloroethene      | 127-18-4    | 10        | 0            | < 0.0310 - < 0.0390       |
| Toluene                | 108-88-3    | 10        | 9            | 0.2300 - 0.5400           |
| Trans-2-Butene         | 624-64-6    | 10        | 1            | 0.0880                    |
| Trans-2-Pentene        | 646-04-8    | 10        | 1            | 0.0600                    |
| Undecane               | 1120-21-4   | 10        | 9            | 0.0450 - 0.2000           |
| onuccane               | 1120-21-4   | -10       | 3            | 0.0430 - 0.2000           |

Laboratory non-detections are reported as less than ("<") the method detection limit.

TABLE 1-5

JANUARY 30, 2023 (Q1) PLANNED AIR SAMPLE DETECTION SUMMARY – REFERENCE LOCATIONS (ALL RESULTS IN PARTS PER BILLION BY VOLUME)

| Compound Name          | Cas No      | # Samples | # Detections | Range of Detections (ppb) |
|------------------------|-------------|-----------|--------------|---------------------------|
| 1-Butene               | 106-98-9    | 3         | 1            | 0.0750                    |
| 1-Hexene               | 592-41-6    | 3         | 0            | < 0.0390 - < 0.0530       |
| 1-Pentene              | 109-67-1    | 3         | 0            | < 0.0400 - < 0.0560       |
| 1,2,3-Trimethylbenzene | 526-73-8    | 3         | 0            | < 0.0370 - < 0.0500       |
| 1,2,4-Trimethylbenzene | 95-63-6     | 3         | 1            | 0.0630                    |
| 1,3-Butadiene          | 106-99-0    | 3         | 1            | 0.0970                    |
| 1,3-Diethylbenzene     | 141-93-5    | 3         | 0            | < 0.0350 - < 0.0480       |
| 1,3,5-Trimethylbenzene | 108-67-8    | 3         | 0            | < 0.0320 - < 0.0430       |
| 1,4-Diethylbenzene     | 105-05-5    | 3         | 0            | < 0.0390 - < 0.0530       |
| 2-Ethyltoluene         | 611-14-3    | 3         | 0            | < 0.0380 - < 0.0520       |
| 2-Methylheptane        | 592-27-8    | 3         | 1            | 0.2600                    |
| 2-Methylhexane         | 591-76-4    | 3         | 2            | 0.0580 - 0.0760           |
| 2-Methylpentane        | 107-83-5    | 3         | 3            | 0.1300 - 0.2900           |
| 2,2-Dimethylbutane     | 75-83-2     | 3         | 0            | < 0.0390 - < 0.0540       |
| 2,2,4-Trimethylpentane | 540-84-1    | 3         | 2            | 0.0450 - 0.1000           |
| 2,3-Dimethylbutane     | 79-29-8     | 3         | Ō            | < 0.0400 - < 0.0540       |
| 2,3-Dimethylpentane    | 565-59-3    | 3         | Ö            | < 0.0380 - < 0.0530       |
| 2,3,4-Trimethylpentane | 565-75-3    | 3         | 1            | 0.1500                    |
| 2,4-Dimethylpentane    | 108-08-7    | 3         | 0            | < 0.0390 - < 0.0540       |
|                        | 620-14-4    | 3         | 0            | < 0.0380 - < 0.0520       |
| 3-Ethyltoluene         | 589-81-1    |           |              |                           |
| 3-Methylheptane        |             | 3         | 3            | 0.0730 - 0.2400           |
| 3-Methylhexane         | 589-34-4    | 3         | 3            | 0.0760 - 0.1900           |
| 3-Methylpentane        | 96-14-0     | 3         | 3            | 0.1600 - 0.2100           |
| 4-Ethyltoluene         | 622-96-8    | 3         | 0            | < 0.0470 - < 0.0650       |
| Acetylene              | 74-86-2     | 3         | 3            | 0.4700 - 1.2000           |
| Benzene                | 71-43-2     | 3         | 3            | 0.1800 - 0.4000           |
| Butane                 | 106-97-8    | 3         | 3            | 2.4000 - 3.9000           |
| Carbon disulfide       | 75-15-0     | 3         | 0            | < 0.0300 - < 0.0410       |
| Cis-2-Butene           | 590-18-1    | 3         | 0            | < 0.0400 - < 0.0550       |
| Cis-2-Pentene          | 627-20-3    | 3         | 0            | < 0.0370 - < 0.0510       |
| Cyclohexane            | 110-82-7    | 3         | 3            | 0.0910 - 0.1700           |
| Cyclopentane           | 287-92-3    | 3         | 0            | < 0.0370 - < 0.0510       |
| Decane                 | 124-18-5    | 3         | 1            | 0.5300                    |
| Dodecane               | 112-40-3    | 3         | 0            | < 0.0370 - < 0.0510       |
| Ethane                 | 74-84-0     | 3         | 3            | 13.0000 - 17.0000         |
| Ethylbenzene           | 100-41-4    | 3         | 2            | 0.0370 - 0.0850           |
| Ethylene               | 74-85-1     | 3         | 2            | 1.0000 - 2.7000           |
| Heptane                | 142-82-5    | 3         | 3            | 0.0510 - 0.1500           |
| Hexane                 | 110-54-3    | 3         | 3            | 0.2100 - 0.3900           |
| Isobutane              | 75-28-5     | 3         | 3            | 0.9300 - 1.4000           |
| Isopentane             | 78-78-4     | 3         | 3            | 0.6500 - 1.4000           |
| Isoprene               | 78-79-5     | 3         | Ö            | < 0.0400 - < 0.0550       |
| Isopropylbenzene       | 98-82-8     | 3         | 0            | < 0.0300 - < 0.0410       |
| m,p-Xylenes            | 179601-23-1 | 3         | ĭ            | 0.2000                    |
|                        | 108-87-2    | 3         | 1            | 0.1300 - 0.1300           |
| Methylcyclohexane      |             | 3         | 3            |                           |
| Methylcyclopentane     | 96-37-7     |           |              | 0.0780 - 0.1700           |
| n-Octane               | 111-65-9    | 3         | 2            | 0.0800 - 0.3700           |
| Naphthalene            | 91-20-3     | 3         | 0            | < 0.0490 - < 0.0680       |
| Nonane                 | 111-84-2    | 3         | 1            | 1.3000                    |
| o-Xylene               | 95-47-6     | 3         | 2            | 0.0340 - 0.0760           |
| Pentane                | 109-66-0    | 3         | 3            | 0.6300 - 1.4000           |
| Propane                | 74-98-6     | 3         | 3            | 7.3000 - 10.0000          |
| Propylbenzene          | 103-65-1    | 3         | 0            | < 0.0300 - < 0.0420       |
| Propylene              | 115-07-1    | 3         | 3            | 0.1500 - 0.4700           |
| Tetrachloroethene      | 127-18-4    | 3         | 0            | < 0.0350 - < 0.0480       |
| Toluene                | 108-88-3    | 3         | 3            | 0.1500 - 0.5000           |
| Trans-2-Butene         | 624-64-6    | 3         | 0            | < 0.0380 - < 0.0520       |
| Halls-Z-Dutelle        |             |           |              |                           |
| Trans-2-Pentene        | 646-04-8    | 3         | 0            | < 0.0460 - < 0.0630       |

Laboratory non-detections are reported as less than ("<") the method detection limit.

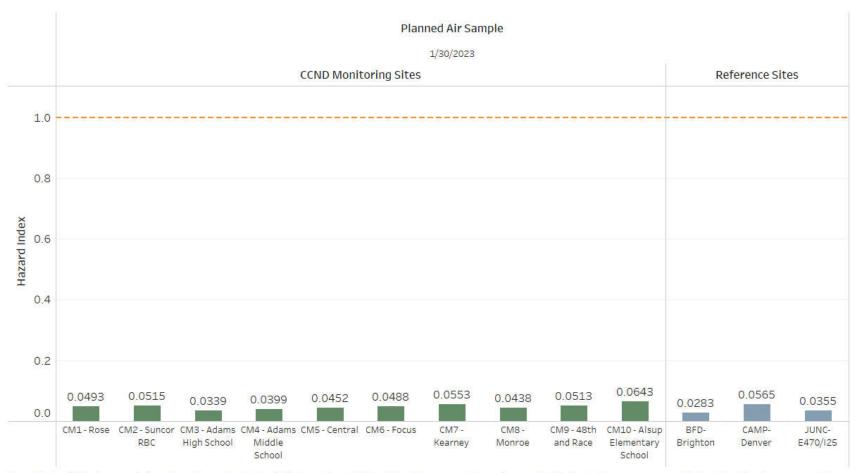
#### 3.2 Screening Health Risk Assessment Results

The purpose of this screening health risk assessment was to determine whether exposure to the concentrations of individual or cumulative VOCs could potentially pose acute (short-term) health hazards. Acute health risks were estimated for each location for each substance both individually and combined. According to USEPA guidelines (USEPA 1989, 2004), a HQ or HI less than or equal to one indicates that exposures are likely to be without any appreciable risk of adverse acute health effects, even for sensitive subpopulations. The calculated acute HQ and HI are summarized in Table 1-6, Table 1-7 and Figure 1-3 and all data are presented in Appendix B. In general, the air sampling data and health risk assessment indicate:

- All measured individual and cumulative air concentrations of detected VOCs in the planned air samples taken on January 30, 2023, at CCND sampling locations were below their respective acute health-based reference levels.
  - Table 1-6 shows all HQs for individual VOCs to be well below one. An HQ of less than one indicates unlikely risk of acute adverse health effects from that VOC.
  - Cumulative health risks (as indicated by HI) for all VOCs are shown in Figure 1-3. The calculated HI for all sampled sites were well below one, indicating unlikely risk of acute adverse health effects from cumulative exposure to measured analytes.
- All measured individual and combined air concentrations of detected VOCs in the planned air samples taken on January 30, 2023, at the three additional reference sample locations were below their respective acute health-based reference levels (Table 1-7, Figure 1-3).
- These risk results for samples taken from both CCND and reference locations indicate the measured concentrations are likely to be without an appreciable risk of adverse acute health effects, even for sensitive sub-populations.

**TABLE 1-6** JANUARY 30, 2023 (Q1) CCND SUMMA CANISTER SCREENING RISK ANALYSIS: COMPOUND-SPECIFIC HAZARD QUOTIENTS FOR PLANNED AIR SAMPLES – CCND MONITORING SITES

| Compound Name          | Cas No      | AEGL 1 60<br>min Value<br>(ppb) | Health Based<br>Reference<br>Level (ppb) | Source                 | CM1 - Rose   | CM2 - Suncor<br>RBC | CM3 - Adams<br>High School | CM4 - Adams<br>Middle<br>School | CM5 -<br>Central | CM6 - Focus  | CM7 -<br>Kearney | CM8 -<br>Monroe | CM9 - 48th<br>and Race | CM10 - Alsu<br>Elementary<br>School |
|------------------------|-------------|---------------------------------|------------------------------------------|------------------------|--------------|---------------------|----------------------------|---------------------------------|------------------|--------------|------------------|-----------------|------------------------|-------------------------------------|
| 1-Butene               | 106-98-9    | NR                              | 27,000                                   | TCEO Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0001                 | 0.0000                              |
| 1-Hexene               | 592-41-6    | NR                              | 500                                      | TCEQ Short-Term AMCV   | 0.0001       | 0.0001              | 0.0001                     | 0.0001                          | 0.0001           | 0.0001       | 0.0001           | 0.0001          | 0.0001                 | 0.0001                              |
| 1-Pentene              | 109-67-1    | NR                              | 12,000                                   | TCEQ Short-Term AMCV   | 0.0000       | 0,0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 1,2,3-Trimethylbenzene | 526-73-8    | 140,000                         | 3,000                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 1,2,4-Trimethylbenzene | 95-63-6     | 140,000                         | 3,000                                    | TCEQ Short-Term AMEV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 1,3-Butadiene          | 106-99-0    | 670,000                         | 298                                      | OEHHA Acute REL        | 0.0001       | 0.0001              | 0.0001                     | 0.0001                          | 0.0001           | 0.0001       | 0.0001           | 0.0001          | 0.0001                 | 0.0001                              |
| 1,3-Diethylbenzene     | 141-93-5    | NR.                             | 450                                      | TCEQ Short-Term AMCV   | 0.0001       | 0.0001              | 0.0001                     | 0.0001                          | 0.0001           | 0.0001       | 0.0001           | 0.0001          | 0.0001                 | 0.0001                              |
| 1,3,5-Trimethylbenzene | 108-67-8    | 140,000                         | 3,000                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 1,4-Diethylbenzene     | 105-05-5    | NR                              | 450                                      | TCEQ Short-Term AMCV   | 0.0001       | 0.0001              | 0.0001                     | 0.0001                          | 0.0001           | 0.0001       | 0.0001           | 0.0001          | 0.0001                 | 0.0001                              |
| 2-Ethyltoluene         | 611-14-3    | NR                              | 250                                      | TCEQ Short-Term AMCV   | 0.0002       | 0.0002              | 0.0001                     | 0.0001                          | 0.0001           | 0.0002       | 0.0001           | 0.0001          | 0.0002                 | 0.0001                              |
| 2-Methylheptane        | 592-27-8    | NR                              | 4,100                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 2-Methylhexane         | 591-76-4    | NR                              | 8,300                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0,0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 2-Methylpentane        | 107-83-5    | NR                              | 5,400                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0001              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0001           | 0.0000          | 0.0001                 | 0.0001                              |
| 2,2-Dimethylbutane     | 75-83-2     | NR                              | 5,400                                    | TCEO Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 2,2,4-Trimethylpentane |             | NR                              | 4,100                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 2,3-Dimethylbutane     | 79-29-8     | NR                              | 5.400                                    | TCEO Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 2,3-Dimethylpentane    | 565-59-3    | NR                              | B,300                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 2,3,4-Trimethylpentane |             | NR                              | 4,100                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 2,4-Dimethylpentane    | 108-08-7    | NR                              | 8,300                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 3-Ethyltoluene         | 620-14-4    | NR.                             | 250                                      | TCEO Short-Term AMCV   | 0.0002       | 0.0002              | 0.0001                     | 0.0001                          | 0.0001           | 0.0002       | 0.0002           | 0.0001          | 0.0002                 | 0.0001                              |
|                        |             |                                 |                                          |                        | 0.0002       | 0.0002              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0002                 | 0.0000                              |
| 3-Methylheptane        | 589-81-1    | NR                              | 4,100                                    | TCEQ Short-Term AMCV   |              |                     |                            |                                 |                  |              |                  |                 |                        |                                     |
| 3-Methylhexane         | 589-34-4    | NR                              | 8,300                                    |                        | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| 3-Methylpentane        | 96-14-0     | NR                              | 5,400                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0001                              |
| 4-Ethyltoluene         | 622-96-8    | NR                              | 250                                      | TCEQ Short-Term AMCV   | 0.0002       | 0.0002              | 0.0002                     | 0.0002                          | 0.0002           | 0.0002       | 0.0002           | 0.0002          | 0.0002                 | 0.0002                              |
| Acetylene              | 74-86-2     | NR                              | 25,000                                   | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0001          | 0.0000                 | 0.0000                              |
| Benzene                | 71-43-2     | 52,000                          | 9                                        | ATSDR Acute MRL        | 0.0400       | 0.0422              | 0.0256                     | 0.0322                          | 0.0367           | 0.0400       | 0.0467           | 0.0356          | 0.0411                 | 0.0556                              |
| Butane                 | 106-97-8    | 5,500,000                       | 92,000                                   | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0001                 | 0.0000                              |
| Carbon disulfide       | 75-15-0     | 13,000                          | 1,990                                    | OEHHA Acute REL        | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| Cis-2-Butene           | 590-18-1    | NR                              | 15,000                                   | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| Cis-2-Pentene          | 627-20-3    | NR                              | 12,000                                   | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0,0000                 | 0.0000                              |
| Cyclohexane            | 110-82-7    | NR                              | 1,000                                    | TCEQ Short-Term AMCV   | 0.0001       | 0.0002              | 0.0001                     | 0.0001                          | 0.0001           | 0.0002       | 0.0001           | 0.0001          | 0.0002                 | 0.0001                              |
| Cyclopentane           | 287-92-3    | NR                              | 5,900                                    | TCEQ Short-Term AMEV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| Decane                 | 124-18-5    | NR                              | 1,000                                    | TCEO Short-Term AMCV   | 0.0000       | 0.0001              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0001                 | 0.0000                              |
| Dodecane               | 112-40-3    | NR.                             | 1,720                                    | CDPHE Acute            | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0001                 | 0.0000                              |
| Ethane                 | 74-84-0     | NR                              | NA                                       | NA                     | NA.          | NA                  | NA                         | NA                              | NA:              | NA:          | NA               | NA              | NA                     | NA                                  |
| Ethylbenzene           | 100-41-4    | 33,000                          | 5,000                                    | ATSDR Acute MRL        | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| Ethylene               | 74-85-1     | NR                              | 500,000                                  | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| Heptane                | 142-82-5    | NR                              | 8,300                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| Hexane                 | 110-54-3    | NR                              | 5,400                                    | TCEQ Short-Term AMCV   | 0.0001       | 0.0001              | 0.0000                     | 0.0001                          | 0.0001           | 0.0001       | 0.0001           | 0.0001          | 0.0001                 | 0.0001                              |
| Isobutane              | 75-28-5     | NR                              | 33,000                                   | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0001                 | 0.0000                              |
| Isopentane             | 78-78-4     | NR                              | 68,000                                   | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| Isoprene               | 78-79-5     | NR                              | 1,400                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| Isopropylbenzene       | 98-82-8     | 50,000                          | 510                                      | TCEQ Short-Term AMCV   | 0.0001       | 0.0001              | 0.0001                     | 0.0001                          | 0.0001           | 0.0001       | 0.0001           | 0.0001          | 0.0001                 | 0.0001                              |
| m,p-Xylenes            | 179601-23-1 | 130,000                         | 1,700                                    | ATSDR Acute MRL        | 0.0001       | 0.0001              | 0.0001                     | 0.0002                          | 0.0001           | 0.0001       | 0.0001           | 0.0001          | 0.0001                 | 0.0001                              |
| Methylcyclohexane      | 108-87-2    | NR                              | 4,000                                    | TCEQ Short-Term AMEV   | 0.0000       | 0.0001              | 0.0000                     | 0.0000                          | 0.0000           | 0.0001       | 0.0000           | 0.0000          | 0.0001                 | 0.0001                              |
| Methylcyclopentane     | 96-37-7     | NR                              | 750                                      | TCEQ Short-Term AMCV   | 0.0002       | 0.0004              | 0.0001                     | 0.0002                          | 0.0002           | 0.0002       | 0.0002           | 0.0002          | 0.0003                 | 0.0003                              |
| n-Octane               | 111-65-9    | NR                              | 4,100                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| Naphthalene            | 91-20-3     | NR                              | 95                                       | TCEQ Short-Term AMCV   | 0.0005       | 0.0005              | 0.0005                     | 0.0005                          | 0.0005           | 0.0005       | 0.0009           | 0.0005          | 0.0006                 | 0.0005                              |
| Nonane                 | 111-84-2    | NR                              | 3,000                                    | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| o-Xylene               | 95-47-6     | 130,000                         | 1,700                                    | ATSDR Acute MRL        | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0001           | 0.0000          | 0.0000                 | 0.0001                              |
| Pentane                | 109-66-0    | NR.                             | 68.000                                   | TCEQ Short-Term AMEV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| Propane                | 74-98-6     | 5,500,000                       | NA NA                                    | NA NA                  | NA.          | NA NA               | NA.                        | NA.                             | NA.              | NA NA        | NA.              | NA NA           | NA.                    | NA NA                               |
|                        |             | NR                              |                                          | TCEQ Short-Term AMCV   | 0.0001       | 0.0001              | 0.0001                     | 0.0001                          | 0.0001           | 0.0001       | 0.0001           | 0.0001          | 0.0001                 | 0.0001                              |
| Propylbenzene          | 103-65-1    |                                 | 510<br>NA                                |                        |              |                     |                            |                                 |                  |              |                  |                 |                        |                                     |
| Propylene              | 115-07-1    | NR<br>35.000                    | NA                                       | NA ATTENDA A SAN MARIA | NA<br>n nnen | NA<br>n noen        | NA<br>0.0057               | NA<br>n nnen                    | NA<br>n nner     | NA<br>n nnce | NA<br>n nosa     | NA<br>n noss    | NA<br>0.0065           | NA<br>0.00EE                        |
| Tetrachloroethene      | 127-18-4    | 35,000                          | 6                                        | ATSDR Acute MRL        | 0.0060       | 0.0058              | 0.0057                     | 0.0052                          | 0.0057           | 0.0058       | 0.0052           | 0.0055          | 0.0065                 | 0.0055                              |
| Toluene                | 108-88-3    | 67,000                          | 2,000                                    | ATSDR Acute MRL        | 0.0002       | 0.0003              | 0.0001                     | 0.0001                          | 0.0002           | 0.0002       | 0.0003           | 0.0002          | 0.0002                 | 0.0002                              |
| Trans-2-Butene         | 624-64-6    | NR                              | 15,000                                   | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| Trans-2-Pentene        | 646-04-8    | NR                              | 12,000                                   | TCEQ Short-Term AMCV   | 0.0000       | 0.0000              | 0.0000                     | 0.0000                          | 0.0000           | 0.0000       | 0.0000           | 0.0000          | 0.0000                 | 0.0000                              |
| Undecane               | 1120-21-4   | NR                              | 550                                      | TCEQ Short-Term AMCV   | 0.0004       | 0.0001              | 0.0002                     | 0.0001                          | 0.0002           | 0.0001       | 0.0002           | 0.0001          | 0.0001                 | 0.0002                              |


NA = Not Available NR = According to EPA, AEGL is "Not Recommended due to insufficient data"

**TABLE 1-7** JANUARY 30, 2023 (Q1) CCND SUMMA CANISTER SCREENING RISK ANALYSIS: COMPOUND-SPECIFIC HAZARD QUOTIENTS FOR PLANNED AIR SAMPLES – REFERENCE SITES

|                        |             |                        |                           |                         |                  | January 30, 202 | 3                |
|------------------------|-------------|------------------------|---------------------------|-------------------------|------------------|-----------------|------------------|
|                        |             | AEGL 1 60<br>min Value | Health Based<br>Reference |                         | BFD-<br>Brighton | CAMP-<br>Denver | JUNC-<br>E470/12 |
| Compound Name          | Cas No      | (ppb)                  | Level (ppb)               | Source                  |                  |                 |                  |
| 1-Butene               | 105-98-9    | NR                     | 27,000                    | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| L-Hexene               | 592-41-6    | NR                     | 500                       | TCEQ Short-Term AMCV    | 0.0001           | 0.0001          | 0.0001           |
| 1-Pentene              | 109-67-1    | NR                     | 12,000                    | TCEO Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| 1,2,3-Trimethylbenzene | 526-73-8    | 140,000                | 3,000                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| 1,2,4-Trimethylbenzene | 95-63-6     | 140,000                | 3,000                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| 1,3-Butadiene          | 106-99-0    | 670,000                | 298                       | DEHHA Acute REL         | 0.0001           | 0.0003          | 0.0001           |
| 1,3-Diethylbenzene     | 141-93-5    | NR                     | 450                       | TCEQ Short-Term AMCV    | 0.0001           | 0.0001          | 0.0001           |
| 1,3,5-Trimethylbenzene | 108-67-8    | 140,000                | 3,000                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| 1,4-Diethylbenzene     | 105-05-5    | NR:                    | 450                       | TCEQ Short-Term AMCV    | 0.0001           | 0.0001          | 0.0001           |
| 2-Ethyltoluene         | 611-14-3    | NR                     | 250                       | TCEQ Short-Term AMCV    | 0.0002           | 0.0002          | 0.0002           |
| 2-Methylheptane        | 592-27-8    | NR                     | 4,100                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0001           |
| 2-Methylhexane         | 591-76-4    | NR                     | 8,300                     | TCEO Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| 2-Methylpentane        | 107-83-5    | NR.                    | 5,400                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0001          | 0.0000           |
| 2,2-Dimethylbutane     | 75-83-2     | NR:                    | 5,400                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| 2,2,4-Trimethylpentane | 540-84-1    | NR                     | 4,100                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| 2,3-Dimethylbutane     | 79-29-8     | NR                     | 5,400                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| 2,3-Dimethylpentane    | 565-59-3    | NR                     | 8,300                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| 2,3,4-Trimethylpentane |             | NR.                    | 4,100                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| 2,4-Dimethylpentane    | 108-08-7    | NR.                    | 8,300                     | TCEO Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| 3-Ethyltoluene         | 620-14-4    | NR.                    | 250                       | TCEQ Short-Term AMCV    | 0.0002           | 0.0002          | 0.0002           |
| 3-Methylheptane        | 589-81-1    | NR                     | 4,100                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0001           |
| 3-Methylhexane         |             | NR.                    | 8,300                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
|                        | 589-34-4    |                        |                           | TCFO Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| 3-Methylpentane        | 96-14-0     | NR:                    | 5,400                     | 1324 211012 12111741121 | 0.0002           |                 | 0.0002           |
| 4-Ethyltoluene         | 622-96-8    | NR                     | 250                       | TCEQ Short-Term AMCV    |                  | 0.0003          |                  |
| Acetylene              | 74-86-2     | NR                     | 25,000                    | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| Benzene                | 71-43-2     | 52,000                 | 9                         | ATSOR Acute MRL         | 0.0200           | 0.0444          | 0.0256           |
| Butane                 | 105-97-8    | 5,500,000              | 92,000                    | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| Carbon disulfide       | 75-15-0     | 13,000                 | 1,990                     | OEHHA Acute REL         | 0.0000           | 0.0000          | 0.0000           |
| Cis-2-Butene           | 590-18-1    | NR                     | 15,000                    | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| Cis-2-Pentene          | 627-20-3    | NR                     | 12,000                    | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| Cyclohexane            | 110-82-7    | NR                     | 1,000                     | TCEQ Short-Term AMCV    | 0.0001           | 0.0002          | 0.0001           |
| Cyclopentane           | 287-92-3    | NR.                    | 5,900                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| Decane                 | 124-18-5    | NR.                    | 1,000                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0001          | 0.0005           |
| Dodecane               | 112-40-3    | NR                     | 1,720                     | CDPHE Acute             | 0.0000           | 0.0000          | 0.0000           |
| Ethane                 | 74-84-0     | NR                     | NA                        | NA                      | NA               | NA              | NA               |
| Ethylbenzene           | 100-41-4    | 33,000                 | 5,000                     | ATSDR Acute MRL         | 0.0000           | 0.0000          | 0.0000           |
| Ethylene               | 74-85-1     | NR                     | 500,000                   | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| Heptane                | 142-82-5    | NR:                    | 8,300                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| Hexane                 | 110-54-3    | NR                     | 5,400                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0001          | 0.0001           |
| Isobutane              | 75-28-5     | NR                     | 33,000                    | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| Isopentane             | 78-78-4     | NR                     | 68,000                    | TCEO Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| Isoprene               | 78-79-5     | NR:                    | 1,400                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| Isopropylbenzene       | 98-82-8     | 50,000                 | 510                       | TCEQ Short-Term AMCV    | 0.0001           | 0.0001          | 0.0001           |
| m,p-Xylenes            | 179601-23-1 | 130,000                | 1,700                     | ATSDR Acute MRL         | 0.0001           | 0.0001          | 0.0001           |
| Methylcyclohexane      | 108-87-2    | NR                     | 4,000                     | TCEO Short-Term AMCV    | 0.0000           | 0.0001          | 0.0000           |
| Methylcyclopentane     | 96-37-7     | NR                     | 750                       | TCEQ Short-Term AMCV    | 0.0001           | 0.0002          | 0.0002           |
| n-Octane               | 111-65-9    | NR.                    | 4,100                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0001           |
| Naphthalene            | 91-20-3     | NR                     | 95                        | TCEO Short-Term AMCV    | 0.0005           | 0.0007          | 0.0005           |
| Nonane                 | 111-84-2    | NR                     | 3,000                     | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0004           |
| o-Xylene               | 95-47-6     | 130,000                | 1,700                     | ATSDR Acute MRL         | 0.0000           | 0.0000          | 0.0000           |
| Pentane                | 109-66-0    |                        | 68,000                    | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
|                        | 74-98-6     | NR<br>E son non        |                           | NA                      | NA:              | NA.             | NA NA            |
| Propane                |             | 5,500,000              |                           |                         |                  | 0.0001          |                  |
| Propylbenzene          | 103-65-1    | NR.                    | 510                       | TCEQ Short-Term AMCV    | 0.0001           |                 | 0.0001           |
| Propylene              | 115-07-1    | NR                     | NA                        | NA                      | NA               | NA              | NA.              |
| Tetrachloroethene      | 127-18-4    | 35,000                 | 6                         | ATSDR Acute MRL         | 0.0058           | 0.0080          | 0.0060           |
| Toluene                | 108-88-3    | 67,000                 | 2,000                     | ATSDR Acute MRL         | 0.0001           | 0.0003          | 0.0001           |
| Trans-2-Butene         | 624-64-6    | NR.                    | 15,000                    | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| Trans-2-Pentene        | 646-04-8    | NR                     | 12,000                    | TCEQ Short-Term AMCV    | 0.0000           | 0.0000          | 0.0000           |
| Undecane               | 1120-21-4   | NR                     | 550                       | TCEQ Short-Term AMCV    | 0.0002           | 0.0002          | 0.0002           |
|                        |             |                        |                           | Hazard Index            | 0.0283           | 0.0565          | 0.0355           |

 $NA = Not \ Available \\ NR = According \ to \ EPA, \ AEGL \ is "Not \ Recommended \ due \ to \ insufficient \ data"$ 

FIGURE 1-3
JANUARY 30, 2023 (Q1) - HAZARD INDEX BY AIR SAMPLING LOCATION FOR ALL PLANNED AIR SAMPLES



Hazard Index (HI) is the sum of all combined hazard quotients (HQ). According to EPA, a HI less than or equal to one (orange line) indicates that exposures are likely to be without any appreciable risk of adverse acute health effects, even for sensitive sub-populations.

#### 3.3 Uncertainty Evaluation

Scientific uncertainty is inherent in each step of the risk assessment process because all risk assessments incorporate a variety of assumptions and professional judgments (USEPA 1989, 2004). Therefore, the acute health hazard estimates presented in this assessment are conditional estimates given a considerable number of assumptions about exposure and toxicity.

This screening-level risk assessment relied on a combination of health-protective exposure scenarios and input values (i.e., high-end exposures). This approach was selected to help risk management decision making. Because of these assumptions, the estimates of acute hazards are themselves uncertain.

This risk assessment did not address past or present health outcomes associated with current or past exposures. As such, this risk assessment cannot be used to make realistic predictions of biological effects and/or used to determine whether someone is ill (cancer or other adverse health effects) due to past or current exposures. This risk assessment was limited to inhalation exposures from outdoor exposures to *all* potential sources.

#### 4.0 PROGRAM CHANGES

No program changes occurred during this reporting period.

Prepared by:

Riley Kloss

Client Project Manager

Montrose Air Quality Services

all llen

Michael Lumpkin, PhD, DABT

Michael H. Lungshin

Senior Toxicologist

CTEH®, LLC

# APPENDIX A SAMPLE CHAIN OF CUSTODIES

| 1               | E A                          | NT                                                       | HA                             | IDV            |          | hain of Cu  |             |              | Turr            | n Around T                   | ime (ru       | e (rush by advanced notice only |        |       |            |                   |                                               | _    |              |
|-----------------|------------------------------|----------------------------------------------------------|--------------------------------|----------------|----------|-------------|-------------|--------------|-----------------|------------------------------|---------------|---------------------------------|--------|-------|------------|-------------------|-----------------------------------------------|------|--------------|
|                 |                              | DY A                                                     |                                |                | L        | Lab No: (   | 0223-       | 902-100      | 0060            | 10 Day:                      | х             | 5 Day:                          |        |       | 3 D        | ay:               | 33.5                                          |      |              |
|                 | A                            | NA                                                       | LYI                            | ICA            | L        | Page:       | 1           | of           | 1               | 2 Day:                       |               | 1 Day:                          |        |       | Cus        | stom T            | AT:                                           | _    | _            |
|                 | 0007                         |                                                          |                                |                |          |             | CUSTOM      | ER INFORM    | MATION          |                              | 300           | PRO                             | JECT   | INFO  | RMA        | TION              | 1                                             | -    |              |
|                 | 0223-902-                    | 100060                                                   |                                |                |          | Company:    | MAQS        |              | 1-              | Aller and a second           | Name:         |                                 |        | T     | Su         | ncor              |                                               |      | 7            |
| Cno             | ial last series 5470 has 1   |                                                          |                                |                |          | Report To:  | Riley Kl    | oss          |                 |                              | Number:       |                                 |        | F     | PROJ-      | 02255             | 5                                             | _    |              |
| oper            | ial Instructions: E470/I25 ( | JUNC) VOID, D                                            | O NOT ANALYZE.                 |                |          | Email:      | rkloss      | @montros     | e-env.co        | <u>om</u>                    | P.O. #:       |                                 | į.     |       | PO-0       | 23647             | ,                                             | _    |              |
|                 |                              |                                                          |                                |                |          | Address:    | 990 W       | 43rd Ave, De | nver, CO 8      | 30211                        | Address:      |                                 |        | 7     | N          | I/A               | W                                             |      | _            |
|                 |                              |                                                          |                                |                |          | Phone:      | 303-670     | 0-0530       |                 |                              | Global ID:    |                                 | Ī      |       | N          | I/A               |                                               |      | -            |
|                 |                              | **Canister pressure may increase as samples are shipping |                                |                |          | N/A         |             |              | j<br>Çeni       | Sampled By                   | /:l           |                                 | М      | AQS - | - Denv     | er                |                                               | _    |              |
|                 |                              |                                                          |                                |                |          |             |             |              |                 |                              |               |                                 |        | Ar    | nalysi     | is Requ           | ueste                                         | ed . |              |
|                 |                              |                                                          |                                |                |          | v .*        |             |              |                 |                              |               | ]                               |        |       | Т          | ΓŤ                | T                                             | T    | T            |
|                 |                              | **Cani                                                   | ster pressure                  | may increase a | s samnle | s are shinn | ing to a di | fforont alo  | untion          | عنيسات دالله                 |               |                                 |        |       |            | l <sub>tr</sub> - |                                               |      |              |
|                 |                              |                                                          | Туре                           |                |          |             | ing to a un |              |                 | nformation                   | - To          |                                 | 1      |       |            |                   |                                               | 1    |              |
|                 | Sample ID (Location ID)      |                                                          | (I) Indoor                     |                | Size     | Flow        | Sample      | Sample       | T               |                              | Commis        |                                 | List   |       |            |                   |                                               |      | ľ            |
|                 | Sumple 15 (Location          | ii ibj                                                   | (A) Ambient<br>(SV) Soil Vapor | Canister ID    | (1L, 3L, | Controller  | Start       | Start        | Vacuum<br>Start | Sample<br>End                | Sample<br>End | Vacuum<br>End                   | ö      |       |            |                   |                                               |      |              |
|                 | - Politica - Company         |                                                          | (S) Source                     |                | 6L, 15L) | ID          | Date        | Time         | ("Hg)           | Date                         | Time          | ("Hg)                           | Suncor |       |            |                   |                                               |      | ŀ            |
| 1               | RBC (CM2)                    |                                                          | Α                              | C70506         | 6        | 16729       | 1/30/23     | 7:15 AM      | 25              | 1/30/23                      | 8:15 AM       | 3                               | x      | +     | 1          | $\vdash$          | +                                             | +-   | +            |
| 2               | 48th & Race (C               | CM9)                                                     | Α                              | 40119          | 6        | 16718       | 1/30/23     | 7:40 AM      | 25              | 1/30/23                      | 8:40 AM       | 5                               | х      | +     | <b>—</b>   |                   | +                                             | +    | +            |
| 3               | Focus Points (C              | CM6)                                                     | Α                              | 44315          | 6        | 16717       | 1/30/23     | 7:29 AM      | 25              | 1/30/23                      | 8:29 AM       | 3                               | x      | +     | T          |                   | $\pm$                                         | +    | $^{\dagger}$ |
| 4               | Adams City High Sch          | ool (CM3)                                                | Α                              | C70457         | 6        | 16727       | 1/30/23     | 12:00 AM     | 25              | 1/30/23                      | 7:58 AM       | 3                               | х      | +     | $\top$     | $\vdash$          | +                                             | +    | $\dagger$    |
| 5               | Central Elementary Sc        | chool (CM5)                                              | А                              | C70488         | 6        | 167726      | 1/30/23     | 7:29 AM      | 25              | 1/30/23                      | 8:27 AM       | 2                               | х      | +     | +          | H                 | +                                             | +    | +            |
| 6               | Rose Hill Elementary S       | chool (CM1)                                              | Α                              | C70528         | 6        | 16723       | 1/30/23     | 7:15 AM      | 25              | 1/30/23                      | 8:14 AM       | 3                               | x      | +     | $\vdash$   | $\vdash$          | +                                             | +    | +            |
| 7               | Kearney Middle Sch           | ool (CM7)                                                | Α                              | C70521         | 6        | 16728       | 1/30/23     | 7:10 AM      | 25              | 1/30/23                      | 8:06 AM       | 2                               | х      | +     | $\vdash$   | $\vdash$          | +                                             | +    | +            |
| 8               | Alsup Elementary Sch         | ool (CM10)                                               | Α                              | 44322          | 6        | 16721       | 1/30/23     | 7:30 AM      | 25              | 1/30/23                      | 8:30 AM       | 1                               | x      | +     | $\vdash$   | $\vdash$          | +                                             | +    | +            |
| 9               | Adams City Middle Sc         | hool (CM4)                                               | A                              | 44316          | 6        | 16722       | 1/30/23     | 7:15 AM      | 25              | 1/30/23                      | 8:16 AM       | 1                               | x      | +     | $\vdash$   | $\vdash$          | +                                             | +    | +            |
| 10              | Monroe Street (              | CM8)                                                     | А                              | 44320          | 6        | 16724       | 1/30/23     | 7:46 AM      | 26              | 1/30/23                      | 8:46 AM       | 2                               | x      | +     | $\vdash$   | $\vdash$          | +                                             | +-   | +            |
| 11              | Brighton Fire Deparn         | nent (BFD)                                               | А                              | 44319          | 6        | 16719       | 1/30/23     | 6:45 AM      | 27              | 1/30/23                      | 7:45 AM       | 5                               | x      | +     | $\vdash$   | $\vdash \vdash$   | +                                             | +    | +            |
| 12              | E470/I25 (JUN                | NC)                                                      | А                              | 44310          | 6        | 16720       | 1/30/23     | 6:30 AM      | 25              | 1/30/23                      | 7:29 AM       | 3                               | ×      | +     | $\vdash$   | $\vdash \vdash$   | +                                             | +    | +            |
| 13              | Denver CDPHE (C              | CAMP)                                                    | А                              | 44311          | 6        | 16725       | 1/30/23     | 7:36 AM      | 25              | 1/30/23                      | 8:36 AM       | 3                               | -      | +     | $\vdash$   | $\vdash \vdash$   | +                                             | +-   | +            |
|                 |                              |                                                          | Signature                      |                |          | Print I     |             | 1            |                 | Company /                    |               |                                 | х      | ᆂ     |            | / T:              |                                               |      |              |
| ¹ Re            | inquished By:                |                                                          | Riley Klos                     | is .           |          | Riley       |             |              | -               |                              |               | or                              |        | -     | -          | / Time            | -                                             |      | -            |
| <sup>1</sup> Re | ceived By:                   | 4                                                        | éxabà                          |                | 6        | PIKA GAR    |             |              |                 | AQS / Client Project Manager |               |                                 | 9      |       |            | 23 13             |                                               |      |              |
| ² Re            | elinquished By:              |                                                          |                                |                | _        | THE SALVA   |             |              |                 | ~ / / rac                    | A MIMIONIO    | ac                              | 2/     | 1123  | <b>,</b> ( | 4:00              | <u>,                                     </u> | _    |              |
| ² Re            | ceived By:                   |                                                          |                                |                |          | 100         |             |              |                 |                              |               |                                 |        |       |            |                   |                                               |      |              |

Relinquished By:

1 1

Received By:

FEB 175 PH 7:000 12.2°C FWCF 6CN

## APPENDIX B AIR SAMPLING RESULTS AND SCREENING RISK ASSESSMENT

|                                           |                      |           |                  |                                              |                       |                     |                            |                                 | CCND Moni              | toring Sites           |                        |                        |                            |                                      | R                   | eference Sites             | ;                   |
|-------------------------------------------|----------------------|-----------|------------------|----------------------------------------------|-----------------------|---------------------|----------------------------|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------|--------------------------------------|---------------------|----------------------------|---------------------|
|                                           |                      |           |                  |                                              | CM1 - Rose            | CM2 - Suncor<br>RBC | CM3 - Adams<br>High School | CM4 - Adams<br>Middle<br>School | CM5 - Central          | CM6 - Focus            | CM7 -<br>Kearney       | CM8 -<br>Monroe        | CM9 - 48th<br>and Race     | CM10 - Alsup<br>Elementary<br>School | BFD-<br>Brighton    | CAMP-<br>Denver            | JUNC-<br>E470/I25   |
|                                           |                      |           | Reference        |                                              | 1/30/23               | 1/30/23             | 1/30/23                    | 1/30/23                         | 1/30/23                | 1/30/23                | 1/30/23                | 1/30/23                | 1/30/23                    | 1/30/23                              | 1/30/23             | 1/30/23                    | 1/30/23             |
| Compound Name<br>1-Butene                 | Cas No. 106-98-9     | (ppb)     | 27,000           | Source TCEQ Short-Term AMCV                  | 0.05 (J)              | 0.1 (J)             | 0.065 (J)                  | < 0.035                         | 0.072 (J)              | < 0.04                 | 0.063 (J)              | 0.073 (J)              | 2.9                        | 1.3                                  | < 0.04              | < 0.055                    | 0.075 (J)           |
| 1-Hexene                                  | 592-41-6             |           | 500              | TCEQ Short-Term AMCV                         |                       |                     | < 0.038                    | < 0.034                         |                        | < 0.038                | < 0.034                | < 0.036                | < 0.043                    |                                      | < 0.039             | < 0.053                    | < 0.04              |
| 1-Pentene                                 | 109-67-1             |           | 12,000           | TCEQ Short-Term AMCV                         |                       |                     | < 0.04                     | < 0.036                         |                        | < 0.04                 | < 0.035                | < 0.038                | < 0.045                    |                                      | < 0.04              | < 0.056                    | < 0.041             |
| 1,2,3-Trimethylbenzene                    |                      | 140,000   | 3,000            | TCEQ Short-Term AMCV TCEQ Short-Term AMCV    | < 0.037               |                     | < 0.036                    | < 0.032                         | < 0.035<br>0.047 (B,J) | < 0.036                | < 0.032                | < 0.034                | < 0.041                    |                                      | < 0.037<br>< 0.032  | < 0.05                     | < 0.037<br>< 0.033  |
| 1,2,4-Trimethylbenzene 1,3-Butadiene      |                      | 670,000   | 298              | OEHHA Acute REL                              | 0.06 (B,J)<br>< 0.033 |                     | 0.032 (B,J)<br>< 0.032     | 0.042 (B,J)<br>< 0.028          |                        | 0.054 (B,J)<br>< 0.032 | 0.07 (B,J)<br>< 0.028  | 0.044 (B,J)<br>< 0.03  | 0.076 (B,J)<br>0.038 (B,J) |                                      | < 0.032             | 0.063 (B,J)<br>0.097 (B,J) | < 0.033             |
| 1,3-Diethylbenzene                        | 141-93-5             | NR        | 450              | TCEQ Short-Term AMCV                         | < 0.036               | < 0.035             | < 0.035                    | < 0.031                         | < 0.034                | < 0.035                | < 0.031                | < 0.033                | < 0.039                    | < 0.033                              | < 0.035             | < 0.048                    | < 0.036             |
| 1,3,5-Trimethylbenzene                    |                      |           | 3,000            | TCEQ Short-Term AMCV                         | < 0.032               |                     | < 0.031                    | < 0.028                         |                        |                        | < 0.028                | < 0.03                 |                            |                                      | < 0.032             | < 0.043                    | < 0.032             |
| 1,4-Diethylbenzene 2-Ethyltoluene         | 105-05-5<br>611-14-3 |           | 450<br>250       | TCEQ Short-Term AMCV TCEQ Short-Term AMCV    |                       |                     | < 0.038<br>< 0.037         | < 0.034<br>< 0.034              |                        | < 0.038<br>< 0.038     | < 0.034<br>< 0.033     | < 0.036<br>< 0.036     | < 0.043<br>< 0.042         |                                      | < 0.039<br>< 0.038  | < 0.053<br>< 0.052         | < 0.04              |
| 2-Methylheptane                           | 592-27-8             |           | 4,100            | TCEQ Short-Term AMCV                         | 0.067 (J)             |                     | < 0.037                    | < 0.035                         |                        | < 0.039                | 0.049 (J)              | < 0.030                | 0.061 (J)                  |                                      | < 0.038             | < 0.054                    | 0.26 (J)            |
| 2-Methylhexane                            | 591-76-4             | NR        | 8,300            | TCEQ Short-Term AMCV                         | 0.048 (J)             | 0.074 (J)           | < 0.039                    | < 0.035                         | 0.041 (J)              | 0.045 (J)              | 0.039 (J)              | 0.041 (J)              | 0.067 (J)                  | 0.1 (J)                              | < 0.04              | 0.076 (J)                  | 0.058 (J)           |
| 2-Methylpentane                           | 107-83-5<br>75-83-2  |           | 5,400<br>5,400   | TCEQ Short-Term AMCV TCEQ Short-Term AMCV    | 0.23 (J)<br>< 0.04    | 0.35 (J)            | 0.16 (J)<br>< 0.039        | 0.19 (J <sup>1</sup> < 0.035    |                        | 0.22 (J)<br>< 0.039    | 0.29 (J)<br>< 0.034    | 0.22 (J)<br>< 0.037    | 0.33 (J)                   |                                      | 0.13 (J)<br>< 0.039 | 0.29 (J)<br>< 0.054        | 0.21 (J)<br>< 0.04  |
| 2,2-Dimethylbutane 2,2,4-Trimethylpentane |                      |           | 4,100            | TCEQ Short-Term AMCV                         | 0.066 (B,J)           |                     | < 0.039                    | 0.049 (B,J)                     | 0.059 (B,J)            | 0.063 (B,J)            | 0.034<br>0.077 (B,J)   | 0.048 (B,J)            | 0.089 (J)<br>0.061 (B,J)   |                                      | < 0.039             | 0.1 (B,J)                  | 0.045 (B,J)         |
| 2,3-Dimethylbutane                        | 79-29-8              |           | 5,400            | TCEQ Short-Term AMCV                         |                       |                     | < 0.032                    | < 0.035                         |                        | < 0.039                | < 0.034                | < 0.037                | < 0.044                    |                                      | < 0.04              | < 0.054                    | < 0.041             |
| 2,3-Dimethylpentane                       | 565-59-3             |           | 8,300            | TCEQ Short-Term AMCV                         |                       |                     | < 0.037                    | < 0.034                         |                        | < 0.038                | < 0.033                | < 0.036                | < 0.042                    |                                      | < 0.038             | < 0.053                    | < 0.039             |
| 2,3,4-Trimethylpentane                    |                      |           | 4,100            | TCEQ Short-Term AMCV                         |                       |                     | < 0.039                    | < 0.035                         |                        | < 0.039                | < 0.034<br>< 0.034     | < 0.037                | < 0.044                    |                                      | < 0.04              | < 0.054                    | 0.15 (J)            |
| 2,4-Dimethylpentane 3-Ethyltoluene        | 108-08-7<br>620-14-4 |           | 8,300<br>250     | TCEQ Short-Term AMCV TCEQ Short-Term AMCV    | 0.096 (J)<br>< 0.039  | < 0.039<br>< 0.038  | < 0.038<br>< 0.037         | < 0.035<br>< 0.034              |                        | < 0.039<br>< 0.038     | 0.042 (J)              | < 0.037<br>< 0.036     | 0.095 (J)<br>< 0.042       |                                      | < 0.039             | < 0.054<br>< 0.052         | < 0.04              |
| 3-Methylheptane                           | 589-81-1             |           | 4,100            | TCEQ Short-Term AMCV                         | 0.059 (B,J)           | 0.11 (B,J)          | 0.13 (B,J)                 | 0.09 (B,J)                      | 0.16 (B,J)             | 0.1 (B,J)              | 0.035 (B,J)            | 0.067 (B,J)            | 0.086 (B,J)                |                                      | 0.073 (B,J)         | 0.097 (B,J)                | 0.24 (B,J)          |
| 3-Methylhexane                            | 589-34-4             |           | 8,300            | TCEQ Short-Term AMCV                         | 0.16 (J)              | 0.2 (J)             | 0.17 (J)                   | 0.11 (J                         | 0.18 (J)               | 0.17 (J)               | 0.14 (J)               | 0.11 (J)               | 0.18 (J)                   | 0.17 (J)                             | 0.076 (J)           | 0.19 (J)                   | 0.12 (J)            |
| 3-Methylpentane                           |                      | NR        | 5,400            | TCEQ Short-Term AMCV                         |                       |                     | 0.1 (J)                    | 0.12 (J                         |                        | 0.16 (J)               | 0.18 (J)               | 0.14 (J)               | 0.22 (J)                   |                                      | 0.17 (J)            | 0.21 (J)                   | 0.16 (J)            |
| 4-Ethyltoluene<br>Acetylene               | 622-96-8<br>74-86-2  | NR<br>NR  | 250<br>25,000    | TCEQ Short-Term AMCV<br>TCEQ Short-Term AMCV |                       |                     | < 0.046                    | < 0.042                         |                        | < 0.047                | < 0.041                | < 0.045                | < 0.053<br>1.2             |                                      | < 0.047             | < 0.065<br>1.2             | < 0.049             |
| Benzene                                   | 71-43-2              | 52,000    | 9                | ATSDR Acute MRL                              | 0.36 (B)              |                     |                            | 0.29 (B,J)                      |                        | 0.36 (B)               | 0.42 (B)               | 0.32 (B)               | 0.37 (B)                   |                                      | 0.18 (B,J)          | 0.4 (B,J)                  | 0.23 (B,J)          |
| Butane                                    | 106-97-8             |           |                  | TCEQ Short-Term AMCV                         | 2.5                   | 4.3                 | 2.9                        | 3.2                             | 2.6                    | 3.7                    | 3.6                    | 3.3                    | 5                          | 3.8                                  | 2.4                 | 3.5                        | 3.9                 |
| Carbon disulfide                          | 75-15-0              |           | 1,990            | OEHHA Acute REL                              | < 0.031               | 10.00               | 0.023                      | < 0.026                         | 7 0.023                | < 0.03                 | < 0.026                | < 0.028                | < 0.033                    | 0.020                                | < 0.03              | < 0.041                    | < 0.031             |
| Cis-2-Butene<br>Cis-2-Pentene             | 590-18-1<br>627-20-3 |           | 15,000<br>12,000 | TCEQ Short-Term AMCV TCEQ Short-Term AMCV    |                       |                     | < 0.039<br>< 0.036         | < 0.035<br>< 0.033              |                        | < 0.04                 | < 0.035<br>< 0.032     | < 0.038<br>< 0.035     | < 0.044<br>< 0.041         |                                      | < 0.04              | < 0.055<br>< 0.051         | < 0.041<br>< 0.038  |
| Cyclohexane                               | 110-82-7             |           | 1,000            | TCEQ Short-Term AMCV                         | 0.13 (B,J)            |                     | 0.096 (B,J)                | 0.11 (B,J)                      | 0.11 (B,J)             | 0.17 (B,J)             | 0.15 (B,J)             | 0.12 (B,J)             | 0.18 (B,J)                 |                                      | 0.091 (B,J)         | 0.17 (B,J)                 | 0.13 (B,J)          |
| Cyclopentane                              | 287-92-3             |           | 5,900            | TCEQ Short-Term AMCV                         | < 0.038               | 0.09 (J)            | < 0.036                    | < 0.033                         | < 0.036                | 0.081 (J)              | 0.081 (J)              | 0.074 (J)              | 0.1 (J)                    | 0.088 (J)                            | < 0.037             | < 0.051                    | < 0.038             |
| Decane                                    | 124-18-5             |           | 1,000            | TCEQ Short-Term AMCV                         | 0.046 (J)             |                     | < 0.038                    | < 0.034                         |                        | < 0.039                | < 0.034                | < 0.037                | 0.059 (J)                  |                                      | < 0.039             | < 0.053                    | 0.53                |
| Dodecane<br>Ethane                        | 112-40-3<br>74-84-0  |           | 1,720<br>NA      | CDPHE Acute<br>NA                            | < 0.038               |                     | < 0.037                    | < 0.033                         | 3 < 0.036<br>3 14      | < 0.037                | < 0.032                | < 0.035                | 0.095 (B,J)                | < 0.035                              | < 0.037             | < 0.051                    | < 0.038             |
| Ethylbenzene                              | 100-41-4             |           | 5,000            | ATSDR Acute MRL                              | 0.092 (B,J)           |                     | 0.042 (B,J)                | 0.055 (B,J)                     | 0.079 (B,J)            | 0.068 (B,J)            | 0.11 (B,J)             | 0.063 (B,J)            | 0.086 (B,J)                |                                      | < 0.033             | 0.085 (B,J)                | 0.037 (B,J)         |
| Ethylene                                  | 74-85-1              |           | 500,000          | TCEQ Short-Term AMCV                         |                       |                     | 1.7                        | 1.6                             | 2.4                    | 2                      | 1.9                    | 1.5                    | 11                         |                                      | 1                   | 2.7                        | 1                   |
| Heptane<br>Hexane                         | 142-82-5<br>110-54-3 |           | 8,300<br>5,400   | TCEQ Short-Term AMCV TCEQ Short-Term AMCV    | 0.13 (B,J)            |                     | 0.077 (B,J)                | 0.082 (B,J)                     | 0.11 (B,J)             | 0.12 (B,J)             | 0.14 (B,J)             | 0.099 (B,J)            | 0.18 (B,J)                 |                                      | 0.051 (B,J)         | 0.15 (B,J)                 | 0.086 (B,J)         |
| Isobutane                                 | 75-28-5              |           | 33,000           | TCEQ Short-Term AMCV                         | 0.33 (B,J)<br>0.86    |                     | 0.25 (B,J)<br>0.99         | 0.28 (B,J)<br>1.1               | 0.31 (B,J)<br>0.89     | 0.34 (B)<br>1.1        | 0.4<br>1.2             | 0.31 (B,J)<br>1.1      | 0.48<br>1.8                |                                      | 0.21 (B,J)<br>0.93  | 0.39 (B,J)<br>1.3          | 0.35 (B)<br>1.4     |
| Isopentane                                | 78-78-4              |           | 68,000           | TCEQ Short-Term AMCV                         |                       |                     |                            | 0.85                            |                        |                        | 1.1                    | 0.95                   | 1.7                        |                                      | 0.65                | 1.3                        | 1.4                 |
| Isoprene                                  | 78-79-5              |           | 1,400            | TCEQ Short-Term AMCV                         |                       |                     | < 0.039                    | < 0.035                         |                        | < 0.039                | < 0.035                | < 0.037                | < 0.044                    |                                      | < 0.04              | < 0.055                    | < 0.041             |
| Isopropylbenzene                          | 98-82-8<br>108-38-3. | 50,000    | 510<br>1,700     | TCEQ Short-Term AMCV ATSDR Acute MRL         | < 0.031<br>0.22 (J)   |                     | < 0.029<br>< 0.098         | < 0.026<br>0.13 (J              |                        | < 0.03<br>0.15 (J)     | < 0.026<br>0.25 (J)    | < 0.028<br>0.15 (J)    | < 0.033<br>0.22 (J)        |                                      | < 0.03              | < 0.041<br>0.2 (J)         | < 0.031             |
| m,p-Xylenes<br>Methylcyclohexane          | 108-87-2             |           | 4,000            | TCEQ Short-Term AMCV                         | 0.22 (J)<br>0.094 (J) |                     | < 0.039                    | 0.15 (J                         |                        | 0.15 (J)               | 0.25 (J)<br>0.092 (J)  | 0.13 (J)<br>0.076 (J)  | 0.22 (J)<br>0.15 (J)       |                                      | < 0.039             | 0.2 (J)                    | < 0.04              |
| Methylcyclopentane                        | 96-37-7              |           | 750              | TCEQ Short-Term AMCV                         |                       |                     | 0.11 (J)                   | 0.12 (J                         |                        | 0.17 (J)               | 0.18 (J)               | 0.16 (J)               | 0.2 (J)                    |                                      | 0.078 (J)           | 0.17 (J)                   | 0.13 (J)            |
| n-Octane                                  | 111-65-9             |           | 4,100            | TCEQ Short-Term AMCV                         |                       |                     | 0.054 (J)                  | < 0.034                         |                        | 0.062 (J)              | 0.064 (J)              | < 0.037                | 0.084 (J)                  |                                      | < 0.039             | 0.08 (J)                   | 0.37 (J)            |
| Naphthalene                               | 91-20-3              |           | 95               | TCEQ Short-Term AMCV                         |                       |                     | 0.048 (B,J)                | < 0.044                         |                        | < 0.049                | 0.083 (B,J)            | < 0.046                | < 0.055                    |                                      | < 0.049             | < 0.068                    | < 0.05              |
| Nonane<br>o-Xylene                        | 111-84-2<br>95-47-6  | 130,000   | 3,000<br>1,700   | TCEQ Short-Term AMCV<br>ATSDR Acute MRL      | < 0.04<br>0.078 (B,J) |                     | < 0.038<br>0.038 (B,J)     | < 0.034<br>0.049 (B,J)          | < 0.037<br>0.065 (B,J) | < 0.038<br>0.055 (B,J) | < 0.034<br>0.093 (B,J) | < 0.036<br>0.056 (B,J) | 0.065 (J)<br>0.083 (B,J)   | < 0.037<br>0.085 (B,J)               | < 0.039<br>< 0.032  | < 0.053<br>0.076 (B,J)     | 0.034 (B,J)         |
| Pentane                                   | 109-66-0             | NR        | 68,000           | TCEQ Short-Term AMCV                         |                       |                     | 0.77                       | 0.84                            | 0.74                   | 1.1                    | 1                      | 0.9                    | 1.7                        |                                      | 0.63                | 1.2                        | 1.4                 |
| Propane                                   | 74-98-6              | 5,500,000 | ) NA             | NA                                           | 5.9                   | 12                  | 6.7                        | 7.2                             | 6.2                    |                        | 8.7                    |                        |                            | 7.10                                 | 7.3                 | 7.9                        | 10                  |
| Propylone                                 | 103-65-1<br>115-07-1 |           | 510              | TCEQ Short-Term AMCV                         |                       |                     | < 0.03<br>0.23 (J)         | < 0.027                         |                        | < 0.03                 | < 0.027                | < 0.029                | < 0.034                    |                                      | < 0.03              | < 0.042                    | < 0.031             |
| Propylene<br>Tetrachloroethene            | 127-18-4             |           | NA<br>6          | NA<br>ATSDR Acute MRL                        | 0.29 (J)<br>< 0.036   | < 0.035             | < 0.23 (3)                 | 0.22 (J <sup>1</sup> < 0.031    |                        | 0.3 (J)<br>< 0.035     | 0.3 (J)<br>< 0.031     | 0.27 (J)<br>< 0.033    | 0.72<br>< 0.039            |                                      | 0.15 (J)<br>< 0.035 | 0.47 (J)<br>< 0.048        | 0.17 (J)<br>< 0.036 |
| Toluene                                   | 108-88-3             | 67,000    | 2,000            | ATSDR Acute MRL                              | 0.47 (B)              |                     | 0.23 (B,J)                 | 0.29 (B)                        |                        | 0.41 (B)               | 0.51                   | 0.36 (B)               | 0.49 (B)                   |                                      | 0.15 (B,J)          | 0.5 (B)                    | 0.3 (B,J)           |
| Trans-2-Butene                            | 624-64-6             | NR        | 15,000           | TCEQ Short-Term AMCV                         | < 0.039               | 0.088 (J)           | < 0.037                    | < 0.033                         | < 0.036                | < 0.037                | < 0.033                | < 0.036                | < 0.042                    | < 0.036                              | < 0.038             | < 0.052                    | < 0.039             |
| Trans-2-Pentene                           | 646-04-8             |           | 12,000           | TCEQ Short-Term AMCV                         |                       |                     | < 0.045                    | < 0.041                         |                        | < 0.046                | < 0.04                 | < 0.043                | < 0.051                    |                                      | < 0.046             | < 0.063                    | < 0.047             |
| Undecane                                  | 1120-21-4            | + IVK     | 550              | TCEQ Short-Term AMCV                         | 0.2 (B,J)             | 0.045 (B,J)         | 0.13 (B,J)                 | 0.073 (B,J)                     | 0.087 (B,J)            | < 0.039                | 0.1 (B,J)              | 0.058 (B,J)            | 0.056 (B,J)                | 0.084 (B,J)                          | 0.088 (B,J)         | 0.1 (B,J)                  | 0.097 (B,J)         |

Screening Legend

Detection < Screening Value</li>Non-Detection < Screening Value</li>

Detection (No Screening Value Established)

Laboratory non-detections are reported as less than ("<") the MDL.

Result qualifiers are reported to the right of corresponding detections (in parentheses).

<sup>(</sup>J) flag indicates an estimated value when the concentration is below the reporting limit but above the method detection limit.

<sup>(</sup>B) flag indicates contamination was found in associated laboratory method blank.

NA = Not Available

NR = According to EPA, AEGL is "Not Recommended due to insufficient data"

CCND Community Monitoring January 30, 2023 (Q1 2023)

## THIS IS THE LAST PAGE OF THIS DOCUMENT