

Prepared For:

MONTROS

Suncor Energy (U.S.A.) Inc. 5801 Brighton Boulevard Commerce City, CO 80022

Prepared By:

Montrose Air Quality Services, LLC 990 W 43rd Avenue Denver, CO 80211

Document Number: Report Period: Submittal Date: 085AA-022555-RT-279 4th Quarter, 2022 February 6, 2023

TABLE OF CONTENTS

<u>SEC</u>	TION	<u>N</u> <u>P</u>	AGE						
EXE	CUT	IVE SUMMARY	3						
1.0	INTF	RODUCTION	4						
2.0 MOBILE SAMPLING PROGRAM									
	2.1	Mobile Van Air Sampling Description	4						
	2.2	Mobile Monitoring Van Air Sampling Methods	6						
	2.3	Screening Health Risk Assessment Methods	7						
3.0	SUM	IMARY AND DISCUSSION OF RESULTS	10						
	3.1	Summary of Mobile Monitoring Van Results	10						
	3.2	Screening Health Risk Assessment Results	10						
	3.3	Uncertainty Evaluation	18						
	3.4	Program Changes	18						
1 16.									

LIST OF APPENDICES

- A ISOMER CHEMICAL SAMPLING DETAILS
- B DAILY WIND ROSES
- C SCREENING RISK ASSESSMENT DETAILS (ALPHABETICAL ORDER BY NEIGHBORHOOD NAME)
- D CALIBRATION AND QA/QC DATA
- E CALIBRATION GAS CERTIFICATION SHEETS

LIST OF TABLES

2-1	MOBILE MONITORING VAN PROGRAM CHEMICALS	5
2-2	NEIGHBORHOOD MONITORING PROGRAM DETAILS	6

LIST OF FIGURES

2-1	MOBILE MONITORING VAN PROGRAM ROUTE THROUGH SIX NEIGHBORHOOD AREAS	7
3-1	ADAMS CITY NEIGHBORHOOD: NOVEMBER 18, 2022	.12
3-2	DUPONT NEIGHBORHOOD: NOVEMBER 15, 2022	.13
3-3	ELYRA-SWANSEA NEIGHBORHOOD: NOVEMBER 17, 2022	.14
3-4	GLOBEVILLE NEIGHBORHOOD: NOVEMBER 17, 2022	.15
3-5	PIONEER PARK NEIGHBORHOOD: NOVEMBER 16, 2022	.16
3-6	WESTERN HILLS NEIGHBORHOOD: NOVEMBER 14, 2022	.17

EXECUTIVE SUMMARY

In response to feedback received by Suncor Energy (U.S.A.) Inc. (Suncor) through community engagement conducted in the fall of 2020, Suncor voluntarily committed to developing a continuous, near real-time air monitoring program to gain insight into air quality for neighborhoods in the vicinity of the Suncor refinery in Commerce City, Colorado. Montrose Environmental Group - Air Quality Services, LLC (Montrose) was contracted by Suncor to deploy, operate and maintain the network in the Commerce City and North Denver (CCND) neighborhoods. Air monitoring was accomplished through three separate technical approaches: (1) continuous, near real-time monitoring for the following analytes¹: carbon monoxide (CO), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), nitric oxide or nitrogen oxide (NO), nitrogen dioxide (NO₂), particulate matter (PM_{2.5}) and total volatile organic compounds (VOCs); (2) periodic collection and laboratory analysis for the presence of specific VOCs from Summa canisters; and (3) periodic real-time air monitoring throughout neighborhoods using a mobile monitoring van to detect the presence of specific VOCs and hydrogen sulfide (H₂S). This report details approach number three, the periodic real-time air monitoring through six neighborhoods with the mobile monitoring van and a screening health risk analysis of the detected chemicals. Continuous real-time air monitoring and Summa canister sampling data are presented in separate reports.

The mobile monitoring van contains the equipment necessary to identify and quantitate individual chemicals present in ambient air at ultra-low concentrations. This equipment measures and reports concentrations of select chemicals at sub-parts per billion (ppb) levels and as quickly as one measurement per second. During the monitoring period, the mobile monitoring van followed a dense route through each of the six CCND residential neighborhoods that fall within a three-mile radius around the refinery. Accessible streets in the monitored neighborhoods were traversed at approximately 10 miles per hour (MPH) while collecting a data point for each chemical every 1 second. During the fourth quarter 2022 sampling period (November 14-18), the mobile monitoring van was in a total of six neighborhoods and collected more than 74,800 data points across five days of monitoring, resulting in approximately 53,700 1-hour rolling average concentrations. Meteorological conditions were also reported in real time.

Health scientists from CTEH, LLC (CTEH[®]) (a subsidiary company of Montrose) performed a screening-level human health risk assessment based on the data collected by Montrose. This evaluation was consistent with federal and state risk assessment guidelines and was conducted to determine whether the estimated 1-hour maximum measured concentrations of individual or cumulative (combined) VOCs could potentially pose acute (short-term) health hazards. The air monitoring data and health risk assessment indicate:

- Air monitoring data and health risk assessment indicate all measured individual and combined air concentrations were below their respective acute health reference levels in all neighborhoods.
- Results indicate the measured concentrations are likely to be without any appreciable risk of adverse acute health effects, even for sensitive sub-populations.

¹ An "analyte" is a material that a measuring device is designed to detect and measure. It may be a chemical gas, an airborne particle, or other type of material.

1.0 INTRODUCTION

In response to feedback received by Suncor Energy (U.S.A.) Inc. (Suncor) through community engagement conducted in the fall of 2020, voluntarily committed to developing a continuous, near real-time air monitoring program to gain insight into air quality for neighborhoods in the vicinity of the Suncor refinery in Commerce City, Colorado. Montrose Environmental Group - Air Quality Services, LLC (Montrose) was contracted by Suncor to deploy, operate and maintain the network in the Commerce City and North Denver (CCND) neighborhoods. Air monitoring was accomplished through three separate technical approaches: (1) continuous, near real-time stationary monitoring for the following analytes: carbon monoxide (CO), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), nitric oxide or nitrogen oxide (NO), nitrogen dioxide (NO₂), particulate matter ($PM_{2.5}$) and total volatile organic compounds (VOCs); (2) periodic collection and laboratory analysis for the presence of specific VOCs from Summa canisters; and (3) periodic real-time air monitoring throughout neighborhoods using a mobile monitoring van to detect the presence of specific chemicals. An "analyte" is a material that a measuring device is designed to detect and measure. It may be a chemical gas, an airborne particle, or other type of material. This report details approach number three. The continuous real-time community air monitoring and Summa canister sampling data are presented in separate reports. Air monitoring, sampling and analysis from approaches (1) and (2) were conducted in accordance with the Quality Assurance Project Plan (QAPP) that can be found online at ccnd-air.com/documents.

2.0 MOBILE SAMPLING PROGRAM

2.1 Mobile Van Air Sampling Description

The mobile monitoring van is a Mercedes 2500 Sprinter Van outfitted with equipment necessary to identify and quantitate individual chemicals present in ambient air to ultra-low concentrations. The mobile monitoring van is equipped with an Ionicon Model 6000-X2 proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). This instrument provides concentrations of select chemicals at sub-parts per billion (ppb) levels and as quickly as one measurement per second. The mobile monitoring van is outfitted with an external sampling system, which transports ambient air from outside of the van into the PTR-TOF-MS sample inlet for immediate real-time analysis. The entire sampling system is comprised of Teflon or Teflon-coated materials, which ensures the lowest amount of sample loss due to surface absorption of chemical molecules. The mobile monitoring van incorporates a high-precision global positioning system (GPS), a sonic anemometer to measure wind direction and wind velocity and other incorporated meteorological (MET) sensors.

During the mobile monitoring program, the list of 65 chemicals in Table 2-1 were measured to determine the instantaneous ambient concentrations. This list of chemicals was compiled based on the typical chemicals that are monitored in urban and industrial areas and the mobile monitoring van analysis capabilities.

The mobile monitoring van followed a driving route through each of the six CCND residential neighborhoods that fall within a three-mile radius around the refinery operations. Accessible streets in the neighborhoods were traversed at approximately 10 MPH while collecting a data point every 1 second. The details of the monitored neighborhoods are listed in Table 2-2 and are shown in Figure 2-1.

o-Diethylbenzene	2-Methylhexane	Neopentane	Methyl-cyclopentane	o-Ethyltoluene (2- ethyltoluene)
1,3-Butadiene	2-Methylpentane	Ethylbenzene	m-Ethyltoluene	p-Diethylbenzene (1,4-diethylbenzene)
1-Butene	3-Methylheptane	Ethylcyclohexane	m/o/p-Xylenes	p-Ethyltoluene (4- ethyltoluene)
1-Hexene	3-Methylhexane	Ethylene	n-Butane	1,2,4- trimethylbenzene
1-Pentene	3-Methylpentane	Hydrogen Cyanide	n-Decane	Propylene (Propene)
Styrene	Acetylene	Hydrogen Sulfide	n-Dodecane	2,2,4- Trimethylpentane
2,2-Dimethylbutane	Benzene	i-Butane	n-Heptane	Tetrachloroethylene
Toluene	Carbon disulfide	i-Pentane	n-Hexane	2,3,4- Trimethylpentane
2,3-Dimethylbutane	trans-2-Butene	Isopentane	n-Nonane	trans-1,2- Dimethylcyclohexane
2,3-Dimethylpentane	cis-2-Butene	Isoprene	n-Octane	trans-1,3- Dimethylcyclohexane
2,4-Dimethylpentane	cis-2-Pentene	m-Diethylbenzene	n-Pentane	cis-1,3- dimethylcyclohexane
2-Methyl-2-butene	Cumene	Methanol	n-Propylbenzene	trans-2-Pentene
2-Methylheptane	Cyclohexane	Methyl-cyclohexane	n-Undecane	Cyclopentane

TABLE 2-1 MOBILE MONITORING VAN PROGRAM CHEMICALS²

² See Appendix A for isomer analysis details

Neighborhood	Area (square miles)	Sampling Date	Start Time	End Time	Total Data Points Collected	Total Hourly Rolling Averages Calculated
Adams City	0.41	11/18/22	10:23	13:33	11,433	7,906
Dupont	1.4	11/15/22	12:26	16:29	14,527	11,000
Elyria-Swansea	1.2	11/17/22	13:58	16:30	9,105	5,578
Globeville	0.44	11/17/22	10:48	13:39	10,274	6,747
Pioneer Park	1.7	11/16/22	10:31	14:36	14,654	11,127
Western Hills	1.6	11/14/22	10:16	14:25	14,874	11,347

TABLE 2-2 NEIGHBORHOOD MONITORING PROGRAM DETAILS

2.2 Mobile Monitoring Van Air Sampling Methods

The PTR-TOF-MS calibration was checked, and the instrument was zeroed each day prior to collection of any ambient air data. The instrument was calibrated using United States Environmental Protection Agency (USEPA) protocol certified calibration gases. The multichemical cylinder standards were used to generate multiple point calibration curves for each commercially available chemical present in the standard. Note: Not all chemicals listed in Table 2-1 are available as certified calibration gases. The chemical dilutions were made using an Environics Model 4040 gas dilution system. The gas dilution system was validated using the appropriate USEPA methodology (40 Code of Federal Regulation Part 51 Appendix M, Method 205). Zero-count measurements were obtained to ensure proper baseline measurements were incorporated into the calculation of each chemical's concentration. Zero-count measurements were performed through the entire sampling system using ultra-high purity air. Post-testing calibration checks were performed on the instrument to ensure there was no significant drift during the course of the sampling event. Drift can cause an increase or decrease in the measured chemical concentrations, which can lead to both positive and negative biasing of the obtained results.

The mobile monitoring van collected continuous measurements throughout each neighborhood following the routes shown in Figure 2-1. Measurements that were collected from transition periods or from moving between neighborhoods were excluded in this assessment.

The measurements were collected from the ambient environment at a height of 15 feet above grade at approximately 8 liters per minute using a Teflon-coated sampling boom and pump. The PTR-TOF-MS sampled a slip stream of this flow at approximately 100 ml/min. The sample was introduced into the reaction tube of the PTR-TOF-MS and results were collected in 1-second intervals. See the attached Appendix D for specific PTR-TOF-MS instrument operation conditions.

FIGURE 2-1 MOBILE MONITORING VAN PROGRAM ROUTE THROUGH SIX NEIGHBORHOOD AREAS

2.3 Screening Health Risk Assessment Methods

CTEH[®] conducted a screening-level public health risk assessment, consistent with federal risk assessment guidelines, to determine whether exposure to the detected concentrations of individual or cumulative (combined) chemicals in the air could potentially pose acute (short-term) health impacts. A tiered approach to the risk assessment was used. This approach involves one or more iterative steps (or tiers) being performed in which health risks are calculated and evaluated multiple times. In most cases, risk assessors cannot know exactly the level of chemical exposure experienced by individuals or communities. Therefore, the first tier involves use of exposure assumptions that are health-conservative. This means that data reflecting maximum exposure potential are plugged into the risk calculations. These are worst-case scenarios that typically represent exposure conditions higher than would be reasonably expected. Such calculations are very simple and assume a person is constantly exposed to the highest one hour rolling average concentration for each detected chemical. If the resulting risk values indicate the lack of likely acute adverse health effects under these worst-case conditions, then the risk assessment is complete. However, if the risk values suggest a potential for acute adverse health effects, then a second tier of risk calculations are performed, but this time using more detailed

assumptions about exposure that are still simple representations of the real world but are more realistic than the first-tier worst-case assumptions. Each successive tier represents a more complete characterization of exposure variability and/or uncertainty that requires a corresponding increase in calculation complexity and scientific level of effort.

The first tier of this risk assessment process is called a screening-level risk assessment. The conservative assumptions used for this level of risk calculation typically represent exposure conditions higher than would be reasonably expected. As such, an exceedance of an acceptable risk level (defined below) does not necessarily indicate that adverse health effects are likely. The Agency for Toxic Substances and Disease Registry (ATSDR) states, "when health assessors find exposures higher than the MRLs (ATSDR's specific health-based reference levels), it means that they may want to look more closely at a site"³. In other words, screening-level findings of an estimated exposure to a specific or cumulative set of chemical(s) being higher than its reference level (RL) does NOT indicate an actual likelihood of adverse effects but does indicate a need to move to a second tier of analysis and refine the risk assessment process with more realistic detail to determine if an actual risk exists that needs to be mitigated.

The screening-level risk assessment reported here includes calculated acute risks from exposure to individually measured chemicals as well as exposure to all measured chemicals at once (cumulative). For individual chemicals, an acute health risk value was calculated as the exposure concentration (EC) divided by the chemical-specific federal or state established acute RL (Equation 1). The result is referred to as the hazard quotient (HQ). Estimates of EC were derived from 1-hour rolling average concentrations of each chemical for the entire measurement time in an individual CCND neighborhood. The RLs used to calculate the HQs are previously established exposure levels below which no adverse effect in humans is expected. If available, RLs adopted by the Colorado Department of Public Health and Environment (CDPHE) were selected for use within this assessment and include ATSDR acute minimum risk levels (MRL), California EPA Office of Environmental Health Hazard Assessment (OEHHA) acute risk levels and Texas Commission on Environmental Quality (TCEQ) acute exposure guideline levels. If the chemical was not listed by CDPHE, a federal and state recommended hierarchy for selection of RLs was used⁴. For chemical isomer groups which were unable to be differentiated the lowest, most health-protective RL of the isomer group was selected for use in this assessment.

Acute HQs were calculated as follows:

Eq. 1 – Hazard Quotient (HQ) Equation

HQ= EC/RL

Where:

HQ= Hazard Quotient

EC= Maximum 1-hour rolling average air concentration

RL= Acute Health-based Reference Level (ATSDR, Cal EPA OEHHA and TCEQ)

³https://www.atsdr.cdc.gov/minimalrisklevels/#:~:text=The%20ATSDR%2C%20in%20response%20to,minimal%20risk%20levels%2 0(MRLs)

⁴ <u>https://drive.google.com/file/d/1P2KEvu0MFiyzQAOQtjQUclqR-WGh1bEX/view</u>

Health risks from potential cumulative exposures to all detected chemicals were calculated by adding together each individual chemical's HQ calculated for a given neighborhood. The sum of all the individual HQs is called a Hazard Index (HI). Adding together all the HQs is also a very health-conservative approach because it assumes that all the measured chemicals exert an adverse effect on the body in a similar manner, which is rarely the case.

An HQ or HI of less than or equal to one is an indication that the estimated exposure is likely to be without an appreciable risk of adverse acute health effects, even for sensitive sub-populations. The potential for adverse health effects increases as HQ or HI increase above one, but it is not known by how much. HQ or HI values of greater than one would prompt a second-tier risk assessment beyond the screening-level assessment.

According to the USEPA and ATSDR, the federal agencies that establish these RLs, these values *"are set below levels that, based on current information, might cause adverse health effects in the people most sensitive."*⁵ This is because RLs are based on observed toxicity in human or animal studies with an added safety factor to account for uncertainties and variabilities in the toxicity data. For example, ATSDR identified the lowest observed adverse effect level (LOAEL) for acute exposure to benzene as 10,200 parts per billion (ppb), based on a study of mice exposed six hours per day for six days. ATSDR then applied a combined safety factor of 300 to derive the final RL to account for several uncertainties, including differences between mice and humans and for sensitive individuals. Therefore, it is scientifically incorrect to assume that all real-world exposures to a chemical at levels higher than a RL will likely result in an adverse effect.

Using the maximum 1-hour rolling average for the EC conservatively assumes that a hypothetical maximally exposed individual occupies the monitored neighborhood and breathes the maximum 1-hour detected concentration continuously for an hour up to multiple days (an acute exposure). A 1-hour average concentration is more appropriate than a 1-second or 1-minute concentration for use in an acute health risk assessment. This is because 1-second exposures to the chemicals measured in this study do not cause adverse effects unless the levels are extremely high (i.e., tens of thousands to millions of ppb). Guidance values for use in emergency situations with extremely elevated levels of these chemicals are available and are discussed below. Across all neighborhoods, 39,7831-hour rolling averages of chemical concentrations were calculated to derive the estimated ECs (Table 2-2). The range between the average and maximum rolling 1-hour average values provides a robust estimate of plausible outdoor exposures of persons occupying the monitored neighborhood while the mobile monitoring van was present (Figures 3-1 to 3-8).

The USEPA also has established values for use in emergency situations, termed Acute Exposure Guideline Levels (AEGLs). Unlike RLs that can be thousands of times below exposure levels where adverse effects are observed, AEGL values are levels at which different acute adverse health effects may be anticipated to occur. According to USEPA, "AEGL-1 represent exposure levels that could produce mild and progressively increasing but transient and non-disabling odor, taste and sensory irritation or certain asymptomatic, non-sensory effects. With increasing airborne concentration above each AEGL, there is a progressive increase in the likelihood of occurrence and the severity of effects described for each corresponding AEGL [i.e., AEGL-2 or AEGL-3]."⁶ The AEGL-1 60-minute value, if available for the applicable chemical, was also used for

⁵

https://www.atsdr.cdc.gov/mrls/index.html#:~:text=ATSDR%20uses%20the%20no%20observed,to%20such%20substance%2Dindu ced%20effects.

⁶ https://www.epa.gov/aegl/about-acute-exposure-guideline-levels-aegls

comparison purposes because it is more precautionary (than AEGL-2 or AEGL-3) as the AEGL-1 level reflects protecting against acute health effects that are reversible upon cessation of exposure.

3.0 SUMMARY AND DISCUSSION OF RESULTS

3.1 Summary of Mobile Monitoring Van Results

A summary of mobile monitoring van results by neighborhood can be found in Table 2-2. Over five days, six neighborhoods were monitored for 65 chemicals, collecting more than 74,800 total data points. Individual neighborhood results are detailed in Figures 3-1 through 3-6. Each figure shows a map of the monitoring locations within each neighborhood, the chemicals that resulted in the top five calculated acute HQs and time profiles of the measured levels of these chemicals. The time profiles show all the 1-second data (orange) and calculated 1-hour rolling averages (green) of the monitoring data. Each green 1-hour average data point shown in these profiles reflects all the 1-second measurements collected over the previous hour. Thus, 1-hour rolling average values are shown on the time profiles only after one hour of data collection (Figure 3-1 through 3-6).

Wind roses for each sampling day are provided in Appendix B. The data used to derive the wind roses were collected from the CCND community sensor location most local to the neighborhood being monitored on each day because the stationary source of MET data is more reliable than the MET station on the mobile monitoring van when the lab is moving.

3.2 Screening Health Risk Assessment Results

Acute health risks were calculated for each neighborhood. According to USEPA guidelines, an acute HQ or HI less than or equal to one (1) indicates that exposures are likely to be without any acute adverse health effects, even for sensitive sub-populations.

Maximum 1-hour rolling average concentrations for 65 chemicals measured in each neighborhood were compared to acute RLs to derive HQs. Figures 3-1 through 3-6 show concentrations of chemicals over the sampling time and summaries of results for chemicals resulting in the five highest HQs by neighborhood (if available). The estimated HI values (if available) shown in Figures 3-1 through 3-6 were calculated by summing the HQs of all detected chemicals measured in a given neighborhood. If any measured chemical resulted in a HQ greater than 1, then a separate figure would be shown for that chemical alone. Complete results for HQs for all chemicals detected in each neighborhood are available in Appendix C.

In conclusion, the data collected during this study phase did not indicate a potential for acute adverse health effects from exposure to the measured chemicals, both individually and combined.

- All HQs were less than one for all detected chemicals, indicating that the maximum 1-hour rolling average concentration for each chemical was below its respective acute RL in all six neighborhoods (Figure 3-1 through 3-6).
- In this quarter, benzene, tetrachloroethylene, hydrogen sulfide, hexene group, hydrogen cyanide and trimethylbenzene group were the chemicals or isomer groupings resulting in the highest HQ in each neighborhood, accounting for over

70% of the total calculated HI values. However, all HI values calculated in all six neighborhoods were below one (Figures 3-1 through 3-6).

• These results indicate that the measured concentrations of chemicals, both individually and cumulative (combined), are likely to be without an appreciable risk of acute adverse health effects, even for sensitive sub-populations.

FIGURE 3-1 ADAMS CITY NEIGHBORHOOD: NOVEMBER 18, 2022

FIGURE 3-2 DUPONT NEIGHBORHOOD: NOVEMBER 15, 2022

FIGURE 3-3 ELYRA-SWANSEA NEIGHBORHOOD: NOVEMBER 17, 2022

FIGURE 3-4 GLOBEVILLE NEIGHBORHOOD: NOVEMBER 17, 2022

FIGURE 3-5 PIONEER PARK NEIGHBORHOOD: NOVEMBER 16, 2022

FIGURE 3-6 WESTERN HILLS NEIGHBORHOOD: NOVEMBER 14, 2022

3.3 Uncertainty Evaluation

Scientific uncertainty is inherent in each step of the risk assessment process because all risk assessments incorporate a variety of assumptions and professional judgments. Therefore, the acute hazard estimates presented in this assessment are estimates of risk due to a number of assumptions about exposure and toxicity. This screening-level risk assessment relied on a combination of health-protective exposure scenarios and input values (i.e., high-end exposures and conservative selection of lowest reference value per isomer). Because of these assumptions, the estimates of acute hazards are themselves uncertain but likely to be over-estimates of actual risk.

This risk assessment did not address past or present health outcomes associated with current or past exposures. As such, this risk assessment cannot be used to make realistic predictions of biological effects and/or used to determine whether someone is ill (cancer or other adverse health effects) due to past or current exposures. This risk assessment was limited to inhalation exposures from outdoor exposures to all potential sources.

3.4 **Program Changes**

No program changes occurred during this reporting period.

Respectfully Submitted:

Here spicks

Steven Yuchs, PhD. Vice President, Technical Ambient & Emerging Technology Montrose Air Quality Services

Michael H. Lumphin

Michael Lumpkin, PhD, DABT Senior Toxicologist CTEH®, LLC

APPENDIX A ISOMER CHEMICAL SAMPLING DETAILS

In a real-time PTR-TOF analysis, it is not possible to speciate isomers, or chemical compounds that have the same molecular weight. For example, n-hexane, 2-methyl pentane and 2,2-dimethyl butane all have a molecular mass of 86.178 g/mol. In order to provide the most conservative determination of concentration during this mapping program, each isomer's concentration is reported as the sum of all isomers with the same molecular weight. For the sake of simplicity, the calculations in the report refer to generic names for a group of specific isomers. The following table defines a simplified list of the many isomers that may comprise the generic groups reported.

Group Name	Specific Isomers	Group Name	Specific Isomers
Butenes	1-Butene	Xylenes	Ethyl Benzene
	cis-2-Butene		o-Xylene
	trans-2-Butene		m-Xylene
			p-Xylene
Butanes	iso-Butane		
	n-Butane	Dimethylcyclohexanes	Ethylcyclohexane
			cis-1,3-Dimethylcyclohexane
			trans-1,2-
Cyclopentanes	Cyclopentane		Dimethylcyclohexane
	1-Pentene		trans-1,3-
	2-Methyl-2-butene		Dimethylcyclohexane
	cis-2-Pentene	•	
	trans-2-Pentene	Octanes	n-Octane
_			2-Methylheptane
Pentanes	iso-Pentane		3-Methylheptane
	n-Pentane		2,2,4-Trimethylpentane
	neo-Pentane		2,3,4-Trimethylpentane
Hexenes	1-Hexene	Trimethylbenzenes	Cumene
	Cyclohexane		1,2,4-Trimethylbenzene
	Methylcyclopentane		o-Ethyltoluene
			m-Ethyltoluene
Hexanes	n-Hexane		p-Ethyltoluene
	2-Methylpentane		n-Propylbenzene
	3-Methylpentane		1,3,5-Trimethylbenzene
	2,2-Dimethylbutane		
	2,3-Dimethylbutane	Diethylbenzenes	o-Diethylbenzene
			m-Diethylbenzene
Heptanes	n-Heptane		p-Diethylbenzene
	2-Methylhexane		All other C ₁₀ H ₁₄ Isomers
	3-Methylhexane		
	2,3-		
	Dimethylpentane		
	2,4-		
	Dimethylpentane		

APPENDIX B DAILY WIND ROSES

APPENDIX C SCREENING RISK ASSESSMENT DETAILS (ALPHABETICAL ORDER BY NEIGHBORHOOD NAME)

Mobile Laboratory Sampling Data Summary and Risk Assessment Adams City Neighborhood | November 18, 2022

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	11,433	0.15	7,906	0.02	0.02	670,000	298	OEHHA Acute REL	0.00008
ACETYLENE	74-86-2	11,433	0.71	7,906	0.15	0.19	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	11,433	9.00	7,906	0.29	0.33	52,000	9	ATSDR Acute MRL	0.03613
BUTANES*	75-28-5	11,433	10.09	7,906	2.61	2.71	NR	33000	TCEQ Short-Term AMCV Health	0.00008
BUTENES*	590-18-1	11,433	33.92	7,906	1.61	1.76	NR	15000	TCEQ Short-Term AMCV Health	0.00012
CARBON DISULFIDE	75-15-0	11,433	0.03	7,906	0.00	0.00	13,000	1,991	OEHHA Acute REL	0.00000
CYCLOPENTANES*	287-92-3	11,433	23.65	7,906	2.62	2.74	NR	5,900	TCEQ Short-Term AMCV Health	0.00047
DECANES	124-18-5	11,433	0.07	7,906	0.03	0.03	NR	1,000	TCEQ Short-Term AMCV Health	0.00003
DIETHYLBENZENES*	141-93-5	11,433	0.28	7,906	0.12	0.13	NR	450	TCEQ Short-Term AMCV Health	0.00030
DIMETHYLCYCLOHEXANES*	638-04-0	11,433	0.17	7,906	0.11	0.11	NR	4,000	CDPHE	0.00003
DODECANES	112-40-3	11,433	0.02	7,906	0.00	0.00	NR	1720	CDPHE	0.00000
ETHYLENE	74-85-1	11,433	22.44	7,906	5.93	6.01	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	11,433	0.15	7,906	0.08	0.08	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	11,433	0.23	7,906	0.12	0.12	NR	5,400	TCEQ Short-Term AMCV Health	0.00002
HEXENES*	592-41-6	11,433	10.91	7,906	0.76	0.83	NR	500	TCEQ Short-Term AMCV Health	0.00165
HYDROGEN CYANIDE	74-90-8	11,433	1.48	7,906	0.14	0.24	2,000	308	OEHHA Acute REL	0.00078
HYDROGEN SULFIDE	7783-06-4	11,433	1.13	7,906	0.15	0.22	510	70	ATSDR Acute MRL	0.00315
ISOPRENE	78-79-5	11,433	1.69	7,906	0.17	0.19	NR	1,400	TCEQ Short-Term AMCV Health	0.00014
METHANOL	67-56-1	11,433	34.79	7,906	5.06	5.36	530,000	21,366	OEHHA Acute REL	0.00025
METHYLCYCLOHEXANE	108-87-2	11,433	0.30	7,906	0.05	0.05	NR	4,000	TCEQ Short-Term AMCV Health	0.00001
NONANES	111-84-2	11,433	0.12	7,906	0.07	0.07	NR	3,000	TCEQ Short-Term AMCV Health	0.00002
OCTANES*	111-65-9	11,433	0.13	7,906	0.07	0.08	NR	4,100	TCEQ Short-Term AMCV Health	0.00002
PENTANES*	109-66-0	11,433	0.47	7,906	0.20	0.20	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	11,433	11.83	7,906	0.32	0.38	NR	NA	NE	
STYRENE	100-42-5	11,433	0.39	7,906	0.06	0.07	20,000	5,000	ATSDR Acute MRL	0.00001
TETRACHLOROETHYLENE	127-18-4	11,433	0.15	7,906	0.01	0.01	35,000	6	ATSDR Acute MRL	0.00228
TOLUENE	108-88-3	11,433	17.98	7,906	0.61	0.71	67,000	2,000	ATSDR Acute MRL	0.00035
TRIMETHYLBENZENES*	622-96-8	11,433	2.65	7,906	0.21	0.26	50,000	250	TCEQ Short-Term AMCV Health	0.00102
UNDECANES	1120-21-4	11,433	0.05	7,906	0.02	0.02	NR	550	TCEQ Short-Term AMCV Health	0.00004
XYLENES*	1330-20-7	11,433	17.35	7,906	1.26	1.40	130,000	2,000	ATSDR Acute MRL	0.00070
									Hazard Index	0.04772

NR= According to EPA, AEGL is "not recommended due to insufficient data" NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment

Dupont Neighborhood | November 15, 2022

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	14,527	0.15	11,000	0.01	0.01	670,000	298	OEHHA Acute REL	0.00005
ACETYLENE	74-86-2	14,527	0.70	11,000	0.10	0.14	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	14,527	6.42	11,000	0.24	0.26	52,000	9	ATSDR Acute MRL	0.02924
BUTANES*	75-28-5	14,527	26.78	11,000	3.69	3.87	NR	33000	TCEQ Short-Term AMCV Health	0.00012
BUTENES*	590-18-1	14,527	18.22	11,000	3.08	3.25	NR	15000	TCEQ Short-Term AMCV Health	0.00022
CARBON DISULFIDE	75-15-0	14,527	0.04	11,000	0.00	0.00	13,000	1,991	OEHHA Acute REL	0.00000
CYCLOPENTANES*	287-92-3	14,527	11.33	11,000	1.49	1.65	NR	5,900	TCEQ Short-Term AMCV Health	0.00028
DECANES	124-18-5	14,527	0.11	11,000	0.05	0.06	NR	1,000	TCEQ Short-Term AMCV Health	0.00006
DIETHYLBENZENES*	141-93-5	14,527	0.16	11,000	0.07	0.08	NR	450	TCEQ Short-Term AMCV Health	0.00017
DIMETHYLCYCLOHEXANES*	638-04-0	14,527	0.08	11,000	0.03	0.03	NR	4,000	CDPHE	0.00001
DODECANES	112-40-3	14,527	0.01	11,000	0.00	0.00	NR	1720	CDPHE	0.00000
ETHYLENE	74-85-1	14,527	33.55	11,000	5.30	5.41	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	14,527	0.16	11,000	0.06	0.06	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	14,527	0.22	11,000	0.05	0.06	NR	5,400	TCEQ Short-Term AMCV Health	0.00001
HEXENES*	592-41-6	14,527	7.45	11,000	0.93	1.01	NR	500	TCEQ Short-Term AMCV Health	0.00202
HYDROGEN CYANIDE	74-90-8	14,527	0.80	11,000	0.17	0.24	2,000	308	OEHHA Acute REL	0.00077
HYDROGEN SULFIDE	7783-06-4	14,527	1.07	11,000	0.18	0.24	510	70	ATSDR Acute MRL	0.00343
ISOPRENE	78-79-5	14,527	0.90	11,000	0.08	0.10	NR	1,400	TCEQ Short-Term AMCV Health	0.00007
METHANOL	67-56-1	14,527	23.54	11,000	2.67	2.86	530,000	21,366	OEHHA Acute REL	0.00013
METHYLCYCLOHEXANE	108-87-2	14,527	0.13	11,000	0.06	0.06	NR	4,000	TCEQ Short-Term AMCV Health	0.00002
NONANES	111-84-2	14,527	0.07	11,000	0.02	0.02	NR	3,000	TCEQ Short-Term AMCV Health	0.00001
OCTANES*	111-65-9	14,527	0.41	11,000	0.03	0.04	NR.	4,100	TCEQ Short-Term AMCV Health	0.00001
PENTANES*	109-66-0	14,527	1.43	11,000	1.13	1.13	NR.	68,000	TCEQ Short-Term AMCV Health	0.00002
PROPYLENE	115-07-1	14,527	3.44	11,000	0.13	0.20	NR.	NA	NE	
STYRENE	100-42-5	14,527	0.37	11,000	0.09	0.10	20,000	5,000	ATSDR Acute MRL	0.00002
TETRACHLOROETHYLENE	127-18-4	14,527	0.09	11,000	0.01	0.01	35,000	6	ATSDR Acute MRL	0.00108
TOLUENE	108-88-3	14,527	21.12	11,000	0.42	0.51	67,000	2,000	ATSDR Acute MRL	0.00025
TRIMETHYLBENZENES*	622-96-8	14,527	3.28	11,000	0.19	0.23	50,000	250	TCEQ Short-Term AMCV Health	0.00092
UNDECANES	1120-21-4	14,527	0.04	11,000	0.00	0.01	NR.	550	TCEQ Short-Term AMCV Health	0.00001
XYLENES*	1330-20-7	14,527	21.73	11,000	0.62	0.75	130,000	2,000	ATSDR Acute MRL	0.00038
									Hazard Index	0.03931

NR= According to EPA, AEGL is "not recommended due to insufficient data" NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment

Elyria-Swansea Neighborhood | November 17, 2022

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	9,105	0.18	5,578	0.04	0.04	670,000	298	OEHHA Acute REL	0.00015
ACETYLENE	74-86-2	9,105	0.68	5,578	0.11	0.14	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	9,105	17.92	5,578	0.29	0.35	52,000	9	ATSDR Acute MRL	0.03933
BUTANES*	75-28-5	9,105	10.18	5,578	3.52	3.63	NR	33000	TCEQ Short-Term AMCV Health	0.00011
BUTENES*	590-18-1	9,105	67.72	5,578	1.49	1.80	NR	15000	TCEQ Short-Term AMCV Health	0.00012
CARBON DISULFIDE	75-15-0	9,105	0.03	5,578	0.00	0.00	13,000	1,991	OEHHA Acute REL	0.00000
CYCLOPENTANES*	287-92-3	9,105	87.88	5,578	2.87	3.19	NR	5,900	TCEQ Short-Term AMCV Health	0.00054
DECANES	124-18-5	9,105	0.07	5,578	0.03	0.03	NR	1,000	TCEQ Short-Term AMCV Health	0.00003
DIETHYLBENZENES*	141-93-5	9,105	0.40	5,578	0.11	0.12	NR	450	TCEQ Short-Term AMCV Health	0.00028
DIMETHYLCYCLOHEXANES*	638-04-0	9,105	0.39	5,578	0.02	0.02	NR	4,000	CDPHE	0.00001
DODECANES	112-40-3	9,105	0.01	5,578	0.00	0.00	NR	1720	CDPHE	0.00000
ETHYLENE	74-85-1	9,105	10.37	5,578	8.84	8.85	NR	500,000	TCEQ Short-Term AMCV Health	0.00002
HEPTANES*	142-82-5	9,105	0.13	5,578	0.04	0.04	NR	8,300	TCEQ Short-Term AMCV Health	0.00000
HEXANES*	110-54-3	9,105	0.49	5,578	0.26	0.26	NR	5,400	TCEQ Short-Term AMCV Health	0.00005
HEXENES*	592-41-6	9,105	57.70	5,578	1.28	1.43	NR	500	TCEQ Short-Term AMCV Health	0.00285
HYDROGEN CYANIDE	74-90-8	9,105	1.43	5,578	0.17	0.21	2,000	308	OEHHA Acute REL	0.00069
HYDROGEN SULFIDE	7783-06-4	9,105	4.92	5,578	0.18	0.24	510	70	ATSDR Acute MRL	0.00346
ISOPRENE	78-79-5	9,105	3.42	5,578	0.22	0.23	NR	1,400	TCEQ Short-Term AMCV Health	0.00017
METHANOL	67-56-1	9,105	44.19	5,578	5.83	6.77	530,000	21,366	OEHHA Acute REL	0.00032
METHYLCYCLOHEXANE	108-87-2	9,105	0.73	5,578	0.15	0.15	NR	4,000	TCEQ Short-Term AMCV Health	0.00004
NONANES	111-84-2	9,105	0.05	5,578	0.01	0.01	NR	3,000	TCEQ Short-Term AMCV Health	0.00000
OCTANES*	111-65-9	9,105	0.13	5,578	0.03	0.03	NR	4,100	TCEQ Short-Term AMCV Health	0.00001
PENTANES*	109-66-0	9,105	0.93	5,578	0.90	0.90	NR	68,000	TCEQ Short-Term AMCV Health	0.00001
PROPYLENE	115-07-1	9,105	11.99	5,578	0.25	0.28	NR	NA	NE	
STYRENE	100-42-5	9,105	0.53	5,578	0.07	0.08	20,000	5,000	ATSDR Acute MRL	0.00002
TETRACHLOROETHYLENE	127-18-4	9,105	0.05	5,578	0.01	0.01	35,000	6	ATSDR Acute MRL	0.00128
TOLUENE	108-88-3	9,105	84.62	5,578	0.86	1.19	67,000	2,000	ATSDR Acute MRL	0.00060
TRIMETHYLBENZENES*	622-96-8	9,105	19.66	5,578	0.35	0.45	50,000	250	TCEQ Short-Term AMCV Health	0.00179
UNDECANES	1120-21-4	9,105	0.05	5,578	0.02	0.02	NR	550	TCEQ Short-Term AMCV Health	0.00004
XYLENES*	1330-20-7	9,105	95.23	5,578	1.58	1.98	130,000	2,000	ATSDR Acute MRL	0.00099
									Hazard Index	0.05291

NR= According to EPA, AEGL is "not recommended due to insufficient data" NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment Globeville Neighborhood | November 17, 2022

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	10,274	0.16	6,747	0.01	0.02	670,000	298	OEHHA Acute REL	0.00007
ACETYLENE	74-86-2	10,274	0.87	6,747	0.11	0.17	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	10,274	2.72	6,747	0.24	0.29	52,000	9	ATSDR Acute MRL	0.03199
BUTANES*	75-28-5	10,274	28.39	6,747	1.75	1.86	NR	33000	TCEQ Short-Term AMCV Health	0.00006
BUTENES*	590-18-1	10,274	9.10	6,747	0.91	1.16	NR	15000	TCEQ Short-Term AMCV Health	0.00008
CARBON DISULFIDE	75-15-0	10,274	0.03	6,747	0.00	0.00	13,000	1,991	OEHHA Acute REL	0.00000
CYCLOPENTANES*	287-92-3	10,274	39.69	6,747	1.14	1.61	NR	5,900	TCEQ Short-Term AMCV Health	0.00027
DECANES	124-18-5	10,274	0.09	6,747	0.03	0.04	NR	1,000	TCEQ Short-Term AMCV Health	0.00004
DIETHYLBENZENES*	141-93-5	10,274	0.26	6,747	0.13	0.14	NR	450	TCEQ Short-Term AMCV Health	0.00031
DIMETHYLCYCLOHEXANES*	638-04-0	10,274	0.10	6,747	0.02	0.02	NR	4,000	CDPHE	0.00001
DODECANES	112-40-3	10,274	0.02	6,747	0.00	0.00	NR	1720	CDPHE	0.00000
ETHYLENE	74-85-1	10,274	11.92	6,747	6.79	6.84	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	10,274	0.14	6,747	0.04	0.05	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	10,274	0.24	6,747	0.07	0.07	NR	5,400	TCEQ Short-Term AMCV Health	0.00001
HEXENES*	592-41-6	10,274	4.59	6,747	0.51	0.73	NR	500	TCEQ Short-Term AMCV Health	0.00146
HYDROGEN CYANIDE	74-90-8	10,274	0.82	6,747	0.12	0.25	2,000	308	OEHHA Acute REL	0.00081
HYDROGEN SULFIDE	7783-06-4	10,274	0.70	6,747	0.17	0.26	510	70	ATSDR Acute MRL	0.00369
ISOPRENE	78-79-5	10,274	0.95	6,747	0.22	0.24	NR	1,400	TCEQ Short-Term AMCV Health	0.00017
METHANOL	67-56-1	10,274	13.41	6,747	5.16	5.28	530,000	21,366	OEHHA Acute REL	0.00025
METHYLCYCLOHEXANE	108-87-2	10,274	0.18	6,747	0.10	0.11	NR	4,000	TCEQ Short-Term AMCV Health	0.00003
NONANES	111-84-2	10,274	0.06	6,747	0.02	0.02	NR	3,000	TCEQ Short-Term AMCV Health	0.00001
OCTANES*	111-65-9	10,274	2.75	6,747	0.03	0.08	NR	4,100	TCEQ Short-Term AMCV Health	0.00002
PENTANES*	109-66-0	10,274	0.72	6,747	0.26	0.27	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	10,274	4.28	6,747	0.35	0.42	NR	NA	NE	
STYRENE	100-42-5	10,274	1.63	6,747	0.09	0.11	20,000	5,000	ATSDR Acute MRL	0.00002
TETRACHLOROETHYLENE	127-18-4	10,274	0.15	6,747	0.00	0.00	35,000	6	ATSDR Acute MRL	0.00076
TOLUENE	108-88-3	10,274	10.01	6,747	0.43	0.47	67,000	2,000	ATSDR Acute MRL	0.00023
TRIMETHYLBENZENES*	622-96-8	10,274	1.57	6,747	0.10	0.12	50,000	250	TCEQ Short-Term AMCV Health	0.00047
UNDECANES	1120-21-4	10,274	0.07	6,747	0.02	0.03	NR	550	TCEQ Short-Term AMCV Health	0.00005
XYLENES*	1330-20-7	10,274	9.91	6,747	0.64	0.70	130,000	2,000	ATSDR Acute MRL	0.00035
									Hazard Index	0.04117

NR= According to EPA, AEGL is "not recommended due to insufficient data" NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment

Pioneer Park Neighborhood | November 16, 2022

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	14,654	0.18	11,127	0.03	0.04	670,000	298	OEHHA Acute REL	0.00012
ACETYLENE	74-86-2	14,654	0.84	11,127	0.16	0.20	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	14,654	6.57	11,127	0.24	0.27	52,000	9	ATSDR Acute MRL	0.02954
BUTANES*	75-28-5	14,654	16.72	11,127	1.72	1.82	NR	33000	TCEQ Short-Term AMCV Health	0.00006
BUTENES*	590-18-1	14,654	23.56	11,127	1.30	1.58	NR	15000	TCEQ Short-Term AMCV Health	0.00011
CARBON DISULFIDE	75-15-0	14,654	0.03	11,127	0.00	0.00	13,000	1,991	OEHHA Acute REL	0.00000
CYCLOPENTANES*	287-92-3	14,654	18.02	11,127	1.29	1.57	NR	5,900	TCEQ Short-Term AMCV Health	0.00027
DECANES	124-18-5	14,654	0.08	11,127	0.04	0.04	NR	1,000	TCEQ Short-Term AMCV Health	0.00004
DIETHYLBENZENES*	141-93-5	14,654	0.19	11,127	0.09	0.11	NR	450	TCEQ Short-Term AMCV Health	0.00024
DIMETHYLCYCLOHEXANES*	638-04-0	14,654	0.11	11,127	0.02	0.02	NR	4,000	CDPHE	0.00001
DODECANES	112-40-3	14,654	0.03	11,127	0.00	0.00	NR	1720	CDPHE	0.00000
ETHYLENE	74-85-1	14,654	8.27	11,127	4.96	5.02	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	14,654	0.24	11,127	0.17	0.17	NR	8,300	TCEQ Short-Term AMCV Health	0.00002
HEXANES*	110-54-3	14,654	0.28	11,127	0.18	0.18	NR	5,400	TCEQ Short-Term AMCV Health	0.00003
HEXENES*	592-41-6	14,654	9.48	11,127	0.69	0.84	NR	500	TCEQ Short-Term AMCV Health	0.00168
HYDROGEN CYANIDE	74-90-8	14,654	1.47	11,127	0.12	0.24	2,000	308	OEHHA Acute REL	0.00079
HYDROGEN SULFIDE	7783-06-4	14,654	0.65	11,127	0.24	0.29	510	70	ATSDR Acute MRL	0.00410
ISOPRENE	78-79-5	14,654	1.06	11,127	0.22	0.24	NR	1,400	TCEQ Short-Term AMCV Health	0.00017
METHANOL	67-56-1	14,654	4.81	11,127	2.71	2.78	530,000	21,366	OEHHA Acute REL	0.00013
METHYLCYCLOHEXANE	108-87-2	14,654	0.17	11,127	0.04	0.05	NR	4,000	TCEQ Short-Term AMCV Health	0.00001
NONANES	111-84-2	14,654	0.06	11,127	0.02	0.02	NR.	3,000	TCEQ Short-Term AMCV Health	0.00001
OCTANES*	111-65-9	14,654	0.10	11,127	0.03	0.03	NR	4,100	TCEQ Short-Term AMCV Health	0.00001
PENTANES*	109-66-0	14,654	0.46	11,127	0.22	0.22	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	14,654	4.72	11,127	0.28	0.30	NR	NA	NE	
STYRENE	100-42-5	14,654	0.31	11,127	0.08	0.09	20,000	5,000	ATSDR Acute MRL	0.00002
TETRACHLOROETHYLENE	127-18-4	14,654	0.10	11,127	0.01	0.01	35,000	6	ATSDR Acute MRL	0.00131
TOLUENE	108-88-3	14,654	17.67	11,127	0.38	0.49	67,000	2,000	ATSDR Acute MRL	0.00025
TRIMETHYLBENZENES*	622-96-8	14,654	4.06	11,127	0.19	0.23	50,000	250	TCEQ Short-Term AMCV Health	0.00093
UNDECANES	1120-21-4	14,654	0.06	11,127	0.03	0.03	NR	550	TCEQ Short-Term AMCV Health	0.00005
XYLENES*	1330-20-7	14,654	21.97	11,127	0.73	0.88	130,000	2,000	ATSDR Acute MRL	0.00044
									Hazard Index	0.04036

NR= According to EPA, AEGL is "not recommended due to insufficient data" NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment Western Hills Neighborhood | November 14, 2022

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	14,874	3.04	11,347	0.02	0.03	670,000	298	OEHHA Acute REL	0.00010
ACETYLENE	74-86-2	14,874	0.87	11,347	0.17	0.23	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	14,874	6.47	11,347	0.14	0.20	52,000	9	ATSDR Acute MRL	0.02214
BUTANES*	75-28-5	14,874	34.48	11,347	2.60	2.88	NR	33000	TCEQ Short-Term AMCV Health	0.00009
BUTENES*	590-18-1	14,874	17.85	11,347	1.78	2.04	NR	15000	TCEQ Short-Term AMCV Health	0.00014
CARBON DISULFIDE	75-15-0	14,874	0.25	11,347	0.00	0.00	13,000	1,991	OEHHA Acute REL	0.00000
CYCLOPENTANES*	287-92-3	14,874	22.85	11,347	2.82	3.14	NR	5,900	TCEQ Short-Term AMCV Health	0.00053
DECANES	124-18-5	14,874	0.12	11,347	0.05	0.05	NR	1,000	TCEQ Short-Term AMCV Health	0.00005
DIETHYLBENZENES*	141-93-5	14,874	0.20	11,347	0.09	0.11	NR	450	TCEQ Short-Term AMCV Health	0.00024
DIMETHYLCYCLOHEXANES*	638-04-0	14,874	0.24	11,347	0.15	0.15	NR	4,000	CDPHE	0.00004
DODECANES	112-40-3	14,874	4.44	11,347	0.01	0.02	NR	1720	CDPHE	0.00001
ETHYLENE	74-85-1	14,874	50.42	11,347	5.80	6.03	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	14,874	0.13	11,347	0.02	0.02	NR	8,300	TCEQ Short-Term AMCV Health	0.00000
HEXANES*	110-54-3	14,874	0.60	11,347	0.12	0.12	NR	5,400	TCEQ Short-Term AMCV Health	0.00002
HEXENES*	592-41-6	14,874	12.73	11,347	0.56	0.69	NR	500	TCEQ Short-Term AMCV Health	0.00138
HYDROGEN CYANIDE	74-90-8	14,874	0.68	11,347	0.10	0.20	2,000	308	OEHHA Acute REL	0.00065
HYDROGEN SULFIDE	7783-06-4	14,874	0.64	11,347	0.21	0.26	510	70	ATSDR Acute MRL	0.00369
ISOPRENE	78-79-5	14,874	2.88	11,347	0.15	0.18	NR	1,400	TCEQ Short-Term AMCV Health	0.00013
METHANOL	67-56-1	14,874	5.97	11,347	4.28	4.37	530,000	21,366	OEHHA Acute REL	0.00020
METHYLCYCLOHEXANE	108-87-2	14,874	0.31	11,347	0.05	0.05	NR	4,000	TCEQ Short-Term AMCV Health	0.00001
NONANES	111-84-2	14,874	0.19	11,347	0.02	0.02	NR	3,000	TCEQ Short-Term AMCV Health	0.00001
OCTANES*	111-65-9	14,874	0.39	11,347	0.09	0.09	NR	4,100	TCEQ Short-Term AMCV Health	0.00002
PENTANES*	109-66-0	14,874	0.39	11,347	0.11	0.11	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	14,874	3.53	11,347	0.25	0.30	NR	NA	NE	
STYRENE	100-42-5	14,874	1.38	11,347	0.08	0.09	20,000	5,000	ATSDR Acute MRL	0.00002
TETRACHLOROETHYLENE	127-18-4	14,874	0.08	11,347	0.00	0.01	35,000	6	ATSDR Acute MRL	0.00101
TOLUENE	108-88-3	14,874	20.91	11,347	0.75	0.94	67,000	2,000	ATSDR Acute MRL	0.00047
TRIMETHYLBENZENES*	622-96-8	14,874	4.30	11,347	0.21	0.28	50,000	250	TCEQ Short-Term AMCV Health	0.00114
UNDECANES	1120-21-4	14,874	0.07	11,347	0.03	0.04	NR	550	TCEQ Short-Term AMCV Health	0.00006
XYLENES*	1330-20-7	14,874	21.48	11,347	0.91	1.14	130,000	2,000	ATSDR Acute MRL	0.00057
									Hazard Index	0.03275

NR= According to EPA, AEGL is "not recommended due to insufficient data" NA= Not Available NC= Not Calculated

APPENDIX D CALIBRATION AND QA/QC DATA

		Initial Inst	trument Calibration an	d Verification		
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
11/13/2022	12:53	Benzene	250	225	-10.0	Pass
		Toluene	250	228	-8.8	Pass
		Xylenes	500	475	-5.0	Pass
	42.50		50	50.0		D
	12:59	Benzene	50	50.8	1.6	Pass
	•	Toluene	50	49.9	-0.2	Pass
		Ayleries	100	110	10.0	PdSS
	1.04	Benzene	20	18.9	-5.5	Pass
	1.04	Toluene	20	19.8	-1.0	Pass
		Xvlenes	40	39.7	-0.7	Pass
	13:06	Benzene	5	5.4	8.0	Pass
		Toluene	5	5.5	10.0	Pass
		Xylenes	10	10.4	4.0	Pass
	13:23	Ethylene	100	98	-2.0	Pass
		Propylene	100	101	1.0	Pass
		1-Butene	100	99	-1.0	Pass
		1-Pentene	100	103	3.0	Pass
		1-Hexene	100	98	-2.0	Pass
		1,3-Butadiene	100	98	-2.0	Pass
	13:27	Ethylene	50	54.6	9.2	Pass
		Propylene	50	51.8	3.6	Pass
		1-Butene	50	52.3	2.2	Pass
		1-Pentene	50	51.1	6.8	Pass
		1-Hexene	50	53.4	3.2	Pass
		1,3-Butadiene	50	51.6	3.2	Pass
	12.22	Ethylopo	10	11.2	12.0	Pacc
	15.52	Bropylopo	10	11.2	2.0	Pass
		1-Butene	10	10.2	2.0	Pass
		1-Pentene	10	10.7	3.0	Pass
		1-Hexene	10	10.4	4.0	Pass
		1.3-Butadiene	10	10.1	1	Pass
	13:49	HCN	50	49.7	-0.6	Pass
	13:51	HCN	25	26.9	7.6	Pass
	13:54	HCN	10	10.1	1.0	Pass
	14:11	H ₂ S	125	122	-2.4	Pass
	14:14	H ₂ S	25	25.5	2.0	Pass
	14:16	H ₂ S	10	10.1	1.0	Pass
	14:18	H ₂ S	5	5.12	2.4	Pass
İ	14:29	Propane	500	482	-3.6	Pass
		Butane	500	465	-7.0	Pass
		Pentane	500	475	-5.0	Pass
		Hexane	500	451	-9.8	Pass
		Heptane	500	459	-8.2	Pass
	14:31	Propane	250	242	-3.2	Pass
		Butane	250	248	-0.8	Pass
		Pentane	250	225	-10.0	Pass
		Hexane	250	228	-8.8	Pass
		пертапе	250	242	-3.2	Pass
	1/1-22	Pronano	100	۵۵	-20	Dace
	14.33	Butane	100	30	-2.0	Pace
		Pentane	100	Q1	-10.0	Pass
		Hexane	100	93	-7.0	Pass
		Heptane	100	91	-9.0	Pass
		Teptune	100	J.	5.0	1 4 5 5
	14:36	Propane	25	24.3	-2.8	Pass
		Butane	25	23.7	-5.2	Pass
		Pentane	25	23.9	-4.4	Pass
		Hexane	25	24.2	-3.2	Pass
		Heptane	25	22.1	-11.6	Pass

			Instrument Calibratio	on Check		
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
11/14/2022	8:09	Ethylene	50	50.8	1.6	Pass
		Propylene	50	51.9	3.8	Pass
		1-Butene	50	47.2	-5.6	Pass
		1-Pentene	50	50.4	0.8	Pass
		1-Hexene	50	48.3	-3.4	Pass
		1,3-Butadiene	50	51.7	3.4	Pass
	8:15	Benzene	100	103	3.0	Pass
		Toluene	100	102	2.0	Pass
		Xylenes	200	213	6.5	Pass
		Benzene	10	9.86	-1.4	Pass
		Toluene	10	9.42	-5.8	Pass
		Xylenes	20	19.3	-3.5	Pass
	8:35	HCN	25	26.4	5.6	Pass
	8:44	H ₂ S	100	98.6	-1.4	Pass
	8:48	H ₂ S	20	20.1	0.5	Pass
	8:51	Propane	150	147	-2.0	Pass
		Butane	150	136	-9.3	Pass
		Pentane	150	139	-7.3	Pass
		Hexane	150	141	-6.0	Pass
		Heptane	150	143	-4.7	Pass
	15:12	HCN	25	25.5	2.0	Pass
	15:23	H ₂ S	20	20.5	2.5	Pass
	15:25	Propane	150	142	-5.3	Pass
		Butane	150	143	-4.7	Pass
		Pentane	150	139	-7.3	Pass
		Hexane	150	139	-7.3	Pass
		Heptane	150	137	-8.7	Pass
	15:29	Benzene	100	103	3.0	Pass
		Toluene	100	97.6	-2.4	Pass
		Xylenes	200	203	1.5	Pass
	15:31	Ethylene	50	53.1	6.2	Pass
		Propylene	50	48	-4.0	Pass
		1-Butene	50	44.1	-11.8	Pass
		1-Pentene	50	45.7	-8.6	Pass
		1-Hexene	50	46.7	-6.6	Pass
		1,3-Butadiene	50	44.1	-11.8	Pass

		-	Instrument Calibratio	n Check		
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
11/15/2022	11:08	Ethylene	50	47.3	-5.4	Pass
		Propylene	50	53.3	6.6	Pass
		1-Butene	50	48	-4.0	Pass
		1-Pentene	50	47.2	-5.6	Pass
		1-Hexene	50	52	4.0	Pass
		1,3-Butadiene	50	49.8	-0.4	Pass
	11:10	Benzene	100	102	2.0	Pass
		Toluene	100	98.4	-1.6	Pass
		Xylenes	200	206	3.0	Pass
	11:17	Benzene	20	19.1	-4.5	Pass
		Toluene	20	19.3	-3.5	Pass
		Xylenes	40	38.3	-4.3	Pass
	11:20	HCN	25	26	4.0	Pass
	11:29	H ₂ S	100	97.8	-2.2	Pass
	11:31	H ₂ S	20	21.6	8.0	Pass
	11:33	Propane	150	139	-7.3	Pass
		Butane	150	142	-5.3	Pass
		Pentane	150	142	-5.3	Pass
		Hexane	150	149	-0.7	Pass
		Heptane	150	139	-7.3	Pass
						_
	17:13	HCN	25	25.1	0.4	Pass
	17:22	H ₂ S	50	46.7	-6.6	Pass
	17:24	Propane	150	145	-3.3	Pass
		Butane	150	142	-5.3	Pass
		Pentane	150	138	-8.0	Pass
		Hexane	150	141	-6.0	Pass
		Heptane	150	147	-2.0	Pass
		-	105			
	17:27	Benzene	100	99.4	-0.6	Pass
		loluene	100	97.3	-2.7	Pass
		Xylenes	200	196	-2.0	Pass
	45.00	Ealer 1	F0	56.2	12.0	D-
	15:29	Etnylene	50	56.3	12.6	Pass
		Propylene	50	54.3	8.6	Pass
		T-Butene	50	52.2	4.4	Pass
		1-Pentene	50	51	2.0	Pass
		1.2 Pute diana	50	54.5	9.0	Pass
		T'2-RALAGIENE	50	53.4	δ.σ	Pa55

			Instrument Calibratio	on Check		
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
11/16/2022	8:52	Ethylene	50	51.5	3.0	Pass
		Propylene	50	55.9	11.8	Pass
		1-Butene	50	49.1	-1.8	Pass
		1-Pentene	50	52.6	5.2	Pass
		1-Hexene	50	55.5	11.0	Pass
		1,3-Butadiene	50	51.3	2.6	Pass
	9:04	Benzene	100	102	2.0	Pass
		Toluene	100	99	-1.0	Pass
		Xylenes	200	210	5.0	Pass
	9:15	Benzene	20	19.2	-4.0	Pass
		Toluene	20	18.3	-8.5	Pass
		Xylenes	40	38.9	-2.8	Pass
	8:59	HCN	25	25.5	2.0	Pass
	9:24	H ₂ S	100	99.9	-0.1	Pass
	9:26		20	19.4	-3.0	Pass
	8:48	Propane	150	151	0.7	Pass
		Butane	150	139	-7.3	Pass
		Pentane	150	153	2.0	Pass
		Hexane	150	146	-2.7	Pass
		Heptane	150	152	1.3	Pass
	15:28	HCN	25	26.4	5.6	Pass
	15:36	H ₂ S	50	49.1	-1.8	Pass
	15:39	Propane	150	139	-7.3	Pass
		Butane	150	135	-10.0	Pass
		Pentane	150	132	-12.0	Pass
		Hexane	150	140	-6.7	Pass
		Heptane	150	138	-8.0	Pass
	15:51	Benzene	100	105	5.0	Pass
		Toluene	100	97.2	-2.8	Pass
		Xylenes	200	213	6.5	Pass
	15:59	Ethylene	50	42.9	-14.2	Pass
		Propylene	50	47.6	-4.8	Pass
		1-Butene	50	45.7	-8.6	Pass
		1-Pentene	50	50.2	0.4	Pass
		1-Hexene	50	45.2	-9.6	Pass
		1,3-Butadiene	50	52.7	5.4	Pass

			Instrument Calibrati	on Check		
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
11/17/2022	9:45	Ethylene	50	50.1	0.2	Pass
		Propylene	50	50.2	0.4	Pass
		1-Butene	50	46.2	-7.6	Pass
		1-Pentene	50	50.9	1.8	Pass
		1-Hexene	50	47.7	-4.6	Pass
		1,3-Butadiene	50	50.4	0.8	Pass
	9:49	Benzene	100	100	0.0	Pass
		Toluene	100	94.7	-5.3	Pass
		Xylenes	200	191	-4.5	Pass
	9:51	HCN	25	24.3	-2.8	Pass
	9:57	H ₂ S	100	97.3	-2.7	Pass
	9:59	Propane	150	142	-5.3	Pass
		Butane	150	146	-2.7	Pass
		Pentane	150	145	-3.3	Pass
		Hexane	150	137	-8.7	Pass
		Heptane	150	146	-2.7	Pass
	17:08	HCN	25	22.9	-8.4	Pass
	17:12	H ₂ S	50	51.4	2.8	Pass
	17:15	Propane	150	141	-6.0	Pass
		Butane	150	138	-8.0	Pass
		Pentane	150	145	-3.3	Pass
		Hexane	150	137	-8.7	Pass
		Heptane	150	149	-0.7	Pass
	17:18	Benzene	100	99.6	-0.4	Pass
		Toluene	100	94.9	-5.1	Pass
		Xylenes	200	198	-1.0	Pass
	17:21	Ethylene	50	48.8	-2.4	Pass
		Propylene	50	48.1	-3.8	Pass
		1-Butene	50	45.9	-8.2	Pass
		1-Pentene	50	46.7	-6.6	Pass
		1-Hexene	50	47.5	-5.0	Pass
		1,3-Butadiene	50	48.2	-3.6	Pass

			Instrument Calibration	on Check		
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
11/18/2022	8:58	Ethylene	50	51.8	3.6	Pass
		Propylene	50	55.7	11.4	Pass
		1-Butene	50	52.7	5.4	Pass
		1-Pentene	50	51.8	3.6	Pass
		1-Hexene	50	51.1	2.2	Pass
		1,3-Butadiene	50	51.6	3.2	Pass
	9:02	Benzene	100	104	4.0	Pass
		Toluene	100	98.1	-1.9	Pass
		Xylenes	200	208	4.0	Pass
	9:07	Benzene	20	19.3	-3.5	Pass
		Toluene	20	19.2	-4.0	Pass
		Xylenes	40	38.4	-4.0	Pass
	9:09	HCN	25	24.3	-2.8	Pass
	9:17	H ₂ S	100	99.9	-0.1	Pass
	9:20		20	20.9	4.5	Pass
	9:23	Propane	150	149.1	-0.6	Pass
		Butane	150	143.4	-4.4	Pass
		Pentane	150	147.1	-1.9	Pass
		Hexane	150	146.2	-2.5	Pass
		Heptane	150	151.2	0.8	Pass
	14:04	HCN	25	25.4	1.6	Pass
	14:08	H ₂ S	50	48.1	-3.8	Pass
	14:10	Propane	150	142	-5.3	Pass
		Butane	150	144	-4.0	Pass
		Pentane	150	139	-7.3	Pass
		Hexane	150	148	-1.3	Pass
		Heptane	150	154	2.7	Pass
	14:14	Benzene	100	99.8	-0.2	Pass
		Toluene	100	95.4	-4.6	Pass
		Xylenes	200	197	-1.5	Pass
	14:16	Ethylene	50	52.4	4.8	Pass
		Propylene	50	46.4	-7.2	Pass
		1-Butene	50	43.8	-12.4	Pass
		1-Pentene	50	47.2	-5.6	Pass
		1-Hexene	50	46.9	-6.2	Pass
		1,3-Butadiene	50	50.1	0.2	Pass

Suncor 4th Quarter PTR Parameters 11/13 – 11/18/22 Initial Calibration Checks

<u> </u>		• •		
Setting	Odor	V 1		
Primary Ion	H3O+	× 🥖		
ansmission	DC	🖉		
	Man/Ctrl	Ctrl		
PC	349.9 🚔	349.90 mbar		
p Drift	2.30 📮	2.29 mbar		
TofLens		4.70E-5 mbar		
TOF		1.03E-6 mbar		
E/N		120 Td		
Temps	80.20 °C	80.10 °C		
SrcValve	50.0			
H2O	6.0	6.00 sccm		
02	0.0	0.00 sccm		
NO	0.0	0.00 sccm		
lhc	4	4.0 mA		
	On/Off	On		
FCinlet	60.0	59.97 sccm		
J FU	℃ 🕞	D*		
Us	150 🚍	145.0 V		
Uso	80 🚍	78.6 V		
Udrift	525	526.1 V		
	0			
Hex1		CP		
Hex1 OFF		COP CON		
Hex1 Freque	1 — 1 ➡ /ON ☑ ency 6.00	OP ON €.00Mhz		
Hex1 Freque Ampli	1 — /ON ☑ ency 6.00 tude 95.0	OP OP ON € 57.1V		
Hex1 OFF, Freque Offset	I /ON ✓ ency 6.00 tude 95.0 - 0.70	 OP ON 6.00Mhz 57.1V → -0.67V 		

Production Settings

Lens 1	14.0	\$	14.0 V		All on 🖂
Lens 2	30.0	+	30.0 V		Lenses 🖂
Lens 3	20.0	*	20.0 V		
Lens 4	60.0	\$	60.0 V		
Lens 5	70.0	\$	70.0 V		
Lens 6	80.0	+	80.0 V		
Lens 7	17.0	•	17.0 V		
Push L	16.5	+	16.0 V		3 mA
Push H	790.0	+	790.0 V	\square	3 mA
Pull L	80.0	+	80.0 V	\square	3 mA
Pull H	680.0	\$	680.0 V	\square	3 mA
Grid	2400.0	+	2282.0 V	\square	1 µA
Cage	5020.0	•	4766 V	\square	99 µA
Refl. Grid	667.0	*	634.0 V	\square	75 µA
efl. Back	900.0	•	855.0 V		167 µA
MCP F	5400	+	5134 V	\square	17 µA
MCP B	2570	+	2471 V		225 µA

TOF Settings

Acquisition				AC	Q active
6 8					
Single Spec T	me (ms)	1000	÷		
Extraction	time (µs)	5.0	-	37	2.7 amu
max Flight	time(µs)	32.0	-	3	1.25 kHz
Data Save Se	ettings				
Spec 🖉	\square	Trace			Raw
Time Duratio	in				× .
02:00:00 💠 🥸	Single File	e Duratio	n.		
12 🔤 1	Vumber	of Files To	s Sto	re	
C:\lonicon\c	lata				Contr.
Add File C	ount Ext for new f	ension file			
<year>_<mo Data_<hour></hour></mo </year>	onth>_ <d •_<minut< td=""><td>lay>\ te>_<sec< td=""><td>ond</td><td></td><td>1</td></sec<></td></minut<></d 	lay>\ te>_ <sec< td=""><td>ond</td><td></td><td>1</td></sec<>	ond		1
2022_11_12\[)ata_18_0	6_25_par	t_XX	×	
	libration				
Mass Axis Ca					1.41
Mass Axis Ca	👗 Cal	E	2	30 sec	
Mass Axis Ca 🥶 日 峙 Mass	Cal TimeBin		2	30 sec	
Mass Axis Ca Mass 21.0220	Cal TimeBin 15984		2	a a	15008
Mass Axis Ca Mass 21.0220 203.9400	Cal TimeBin 15984 161505] 1 1		a b	15008 52822.1

Acquisition Settings

🛞 H	100		×
RBB	ł		
Hex1			OP
OFF/ON			ON
Frequency	6.00	-	6.00Mhz
Amplitude	95.0	-	57.4V
Offset -	0.70	4	-0.67V
<			

Hexapole Settings

11-14-22 Western Hills Neighborhood PTR Operating Parameters

Production Settings

1	MCP				3 🕝 🗠
All on 🖂		15.0 V	\$	14.0	Lens 1
Lenses 🗹		30.0 V	*	30.0	Lens 2
		20.0 V	-	20.0	Lens 3
		60.0 V	-	60.0	Lens 4
		69.0 V	+	70.0	Lens 5
		80.0 V	÷	80.0	Lens 6
		17.0 V	÷	17.0	Lens 7
3 mA		16.0 V	\$	16.5	Push L
2 mA		790.0 V	*	790.0	Push H
3 mA		80.0 V	÷	80.0	Pull L
3 mA		680.0 V	-	680.0	Pull H
1 µA		2283.0 V	÷	2400.0	Grid
99 µA	\square	4768 V	*	5020.0	Cage
75 µA		634.0 V	+	667.0	Refl. Grid
167 µA		855.0 V	\$	900.0	lefl. Back
17 µA		5134 V	*	5400	MCP F
221 µA		2461 V	\$	2570	MCP B

TOF Voltages

Acquisition				A	CQ act	ive
	1					
Single Spec	Time (ms)	1000	*			
Extraction	n time (µs)	5.0	*		372.9 ar	nu
max Flig	httime(µs)	32.0	*		31.25 k	Hz
Data Save	Settings					
Spec 🗹		Trace		E	Raw	
Time Durat	tion				\sim	
02:00:00 🖨	Single File	e Duratio	n			
12 🗘	Number	of Files T	o Stoi	e		
C:\lonicon	\data				6	
Add File	Count Ext Q for new 1	ension file				
<year>_<n Data_<hou< td=""><td>nonth>_<c ir>_<minut< td=""><td>lay>\ te>_<sec< td=""><td>ond></td><td></td><td>22</td><td></td></sec<></td></minut<></c </td></hou<></n </year>	nonth>_ <c ir>_<minut< td=""><td>lay>\ te>_<sec< td=""><td>ond></td><td></td><td>22</td><td></td></sec<></td></minut<></c 	lay>\ te>_ <sec< td=""><td>ond></td><td></td><td>22</td><td></td></sec<>	ond>		22	
2022_11_13	\Data_21_0	9_30_par	t_XX)	C		
Mass Axis (alibration					
💕 🖬 🖬	Cal		3	0 s	ec	÷
Mass	TimeBin					
21.0220	15956	Ċ	^	а	1500	5.5
	161452	前	i l	b	-52838	3.7
203.9400	101436	2.000	1			

Acquisition Settings

🛞 H			\times
i A B B	4		
Hex1			OP
OFF/ON			ON
Frequency	6.00	*	6.00Mhz
Amplitude	95.0	+	59.1V
Offset -	0.70	4	-0.67V

Hexapole Settings

7 55 . 7		21.022 *(H2O)H+	6.78E+7	ccps
/.JE+/-	Ma	28.015 (HCN)H+	2.85E+4	ccps
7E+7-		28.026 (C2H4)+	1.41E+4	ccps
6.5E+7-		34.995 (H2S)H+	2.91E+3	ccps
6E+7-		43.047 Propylene[C3H6	794	ccps
		55.054 [1,3 BDE]	319	ccps
5.5C+7-		57.070 Butenes	695	ccps
5E+7-		79.054 Benzene	22.5	ccps
4.5E+7-	<u></u>	86.090 [13BDE][O2]+	10.1	ccps
4E+7-		93.070 Toluene	146	ccps
		105.07 Styrene	50.6	ccps
3.5E+ / -		107.11 Xylenes, EB	262	ccps
3E+7-		44.040 Propane[O2]	6.75E+3	3 ccps
2.5E+7-		58.050 Butanes[O2]	1.46E+3	ccps
2E+7-		71.086 Pentenes[H+]	468	ccps
		72.080 Pentanes[O2]	1.81E+3	s ccps
1.5E+7-		85.105 Hexenes[H+]	469	ccps
1E+7-		86.090 Hexanes[O2]	1.12E+3	3 ccps
5E+6-		100.12 Heptanes[O2]	915	ccps
0-		166.85 Tetrachloroethy	6.32	ccps

757555.0 AM 75820.0 AM 75845.0 AM 75935.0 AM 75935.0 AM 80025.0 AM 80025.0 AM 80025.0 AM 801:15.0 AM 80140.0 AM 80205.0 AM 80235.0 AM 80225.0 AM 80325.0 AM 80325.0 AM 80345.0 AM 804:10 AM 80435.0 AM 11/14/2022 11/14/202

Hydronium Ion Trace

Western Hills

End Western Hills

PTR Operating Parameters 11-15-22 Dupont

	l		0	\odot
Setting	Odor		~	1
rimary lor	H3O+		~	9
nsmission	n DC		~	9
	Man/Ct	trl	Ctrl	
PC	350.9		350.97 m	bar
p Drift	t 2.30	4	2.30 m	bar
TofLens	s	in and	4.70E-5 m	bar
TOF	-		1.00E-6 m	bar
E/N	1		12	0 Td
Temp	s 80.10	°C	80.0	0 °C
SrcValve	e 50.0	1		
H2C	6.0	9	6.01 sc	cm
02	2 0.0		0.00 sc	cm
NC	0.0		0.00 sc	cm
lh	c 4	-	4.0	mA
	On/Of	f	On	
FCinle	t 60.0		60.07 so	cm
FU	°C [.>	D*	
Us	150	3	145.0	v
Uso	80		78.6	V
Udrift	525	3	526.1	v
8	H —		12	×
(H —		12	×
() Hext	H —		10	×
(Second second s	H — 1 F/ON 🗹		40 (×
Hext Frequ	H — I F/ON 🗹 Jency 6.00		OF 1001	× ⊃;
Hext OFI Frequ Amp	H — I F/ON 🗹 Jency 6.00 litude 95.0		€ 6.00M € 56.1V	× A
Hext Frequ Amp Offse	H — F/ON 🗹 Jency 6.00 litude 95.0 t – 0.70)	€ 6.00M 56.1V € -0.67	× vi ilhz /

Production Settings

j 🙆 🗠			MCP	a a
Lens 1	14.0 🖨	14.0 V		All on 🖂
Lens 2	30.0 韋	30.0 V		Lenses 🔽
Lens 3	20.0 ≑	20.0 V		
Lens 4	60.0 韋	60.0 V		
Lens 5	70.0 ≑	69.0 V		
Lens 6	80.0 韋	80.0 V		
Lens 7	17.0 韋	17.0 V		
Push L	16.5 韋	16.0 V		3 mA
Push H	790.0 韋	790.0 V		3 mA
Pull L	80.0 ≑	80.0 V	\square	3 mA
Pull H	680.0 韋	680.0 V		3 mA
Grid	2400.0 🖨	2282.0 V		1 μA
Cage	5020.0 ≑	4766 V		99 µA
Refl. Grid	667.0 韋	634.0 V		75 µA
Refl. Back	900.0 🖨	855.0 V	\square	167 µA
MCP F	5400 韋	5134 V		17 µA
MCP B	2570 🖨	2473 V	M	227 µA

TOF Lens Voltages

				A	CQ activ
Single Spec 1	līme (ms)	1000	4		
Extraction	time (µs)	5.0	4		372.4 am
max Fligh	ittime(µs)	32.0	*		31.25 kH
Data Save S	ettings				
Spec 🖉		Trace		E	Raw
Time Durati	on				4
02:00:00 🚖	Single File	E Duratio	n		
12 🔤	Number	of Files To	Sto	re	
C:\lonicon\	data				6
Add File	Count Ext	ension			
New ACC	I tor new 1	ne			
New ACC <year>_<m Data_<hour< td=""><td>onth>_<c >_<minut< td=""><td>iay>\ te>_<sec< td=""><td>ond></td><td>2</td><td>62</td></sec<></td></minut<></c </td></hour<></m </year>	onth>_ <c >_<minut< td=""><td>iay>\ te>_<sec< td=""><td>ond></td><td>2</td><td>62</td></sec<></td></minut<></c 	iay>\ te>_ <sec< td=""><td>ond></td><td>2</td><td>62</td></sec<>	ond>	2	62
New ACC <year>_<m Data_<hour 2022_11_15\</hour </m </year>	onth>_ <c >_<minul Data_07_4</minul </c 	iay>\ te>_ <sec 1_06_par</sec 	ond> t_XX)	(63
New ACC <year>_<m Data_<hour 2022_11_15\ Mass Axis Ca</hour </m </year>	onth>_ <c onth>_<c >_<minul Data_07_4 alibration</minul </c </c 	lay>\ te>_ <sec l1_06_par</sec 	ond> t_XX) At	<	CAL done
New ACC <year>_<m Data_<hour 2022_11_15\ Mass Axis Ca</hour </m </year>	onth>_ <c >_<minut Data_07_4 alibration</minut </c 	iay>\ te>_ <sec 1_06_par</sec 	ond> t_XX) Au	(1 to(30 si	CAL done
New ACC <year>_<m Data_<hour 2022_11_15 Mass Axis Ca Mass Mass</hour </m </year>	onth>_ <c >_<minut Data_07_4 alibration</minut </c 	iay>\ te>_ <sec 1_06_par</sec 	ond> t_XX Au	(1 to(10 si	CAL done
New ACC <year>_<m Data_<hour 2022_11_15\ Mass Axis Ca Mass 21.0220</hour </m </year>	onth>_ <commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth>_<commonstants onth onth>_<commonstants onth onth onth onth onth onth onth onth</commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants </commonstants 	iay>\ te>_ <sec I1_06_par</sec 	ond> t_XX0 Au	(1 to (30 si a	CAL done ec 🗧
New ACC <year>_<m Data_<hour 2022_11_15\ Mass Axis Ca Mass 21.0220 203.9400</hour </m </year>	onth>_ <c >_<minut Data_07_4 alibration Cal TimeBin 16021 161611</minut </c 	iay>\ te>_ <sec 1_06_par</sec 	ond> t_XXX Au	x Ito(30 si a b	CAL done ec 4 15015.7
New ACC <year>_<m Data_<hour 2022_11_15\ Mass Axis Ca Mass 21.0220 203.9400 330.8500</hour </m </year>	onth>_ <c >_<minut Data_07_4 alibration Cal TimeBin 16021 161611 220295</minut </c 	iay>\ te>_ <sec 11_06_par</sec 	ond> t_XX0 Au	(100 (0 5) (0 5)	CAL done ec 4 15015.' -52817.9

Acquisition Settings

Dupont Neighborhood

11-16-2 PTR Parameters Pioneer Park

	5	00				
Setting	Odor	~ /				
Primary lor	n H3O+	H3O+ V				
ansmissior	DC	× 🥜				
	Man/Ctrl	Ctrl				
PC	352.0	352.00 mbar				
p Drift	t 2.30 🖨	2.29 mbar				
TofLens	5	4.85E-5 mbar				
TOF	-	7.75E-7 mbar				
E/N	1	120 Td				
Temp	s 80.10 °C	80.00 °C				
SrcValve	= 50.0 🚍]				
H2C	6.0	6.00 sccm				
02	2 0.0 🌲	0.00 sccm				
NC	0.0	0.00 sccm				
Jh	c 4	4.0 mA				
	On/Off	On				
FCinle	t 60.0	60.00 sccm				
J FU	°C □	D*				
Us	150 🗐	145.0 V				
Uso	80 🚔	78.6 V				
11.000	525	526 1 V				
Udrift	[(*) [520.11				
Udnft	H					
Udnft	H —					
Udnft () Hext	H —					
Udrift () Hext	H — I E/ON 🗹					
Udrift	H — F/ON Juency 6.00	OP ON 6.00Mhz				
Udrift Went	H – I F/ON V Jency 6.00 litude 95.0	OP ON €.00Mhz \$1V				
Udrift Wext OFF Frequ Amp Offse	H – F/ON Z uency 6.00 litude 95.0 tt – 0.70	OP ON 6.00Mhz € 58.1V € -0.67V				

Production Settings

Lens 1	14.0 韋	14.0 V		All on 🗹
Lens 2	30.0 韋	30.0 V		Lenses 🖂
Lens 3	20.0 🖨	20.0 V	-	
Lens 4	60.0 韋	60.0 V	1	
Lens 5	70.0 韋	70.0 V		
Lens 6	80.0 韋	80.0 V		
Lens 7	17.0	17.0 V		
Push L	16.5	16.0 V		3 mA
Push H	790.0 韋	790.0 V		3 mA
Pull L	80.0	80.0 V	\square	3 mA
Pull H	680.0 🖨	680.0 V		3 mA
Grid	2400.0	2282.0 V		1 µA
Cage	5020.0 韋	4766 V		99 µA
lefl. Grid	667.0 韋	634.0 V	\square	75 µA
efl. Back	900.0 韋	855.0 V		167 µA
MCP F	5400 韋	5134 V	\square	17 µA
MCP B	2570 🖨	2465 V		224 µA

TOF Voltages

Acquisition	1			ACQ active
🗃 🖬 层	L.			
Single Spec	Time (ms)	1000		
Extraction	n time (µs)	5.0		372.3 amu
max Flig	httime(µs)	32.0	+	31.25 kHz
Data Save	Settings			
Spec 🖉	\sim	Trace		Raw
Time Durat	ion			4
02:00:00	Single File	Duration	ē	
12 🗳	Number	of Files To	Store	e)
C:\lonicon	\data			6
Add File	Count Ext Q for new f	ension file		
<year>_<n Data_<hou< td=""><td>nonth>_<c r>_<minut< td=""><td>lay>\ te>_<secc< td=""><td>nd></td><td>62</td></secc<></td></minut<></c </td></hou<></n </year>	nonth>_ <c r>_<minut< td=""><td>lay>\ te>_<secc< td=""><td>nd></td><td>62</td></secc<></td></minut<></c 	lay>\ te>_ <secc< td=""><td>nd></td><td>62</td></secc<>	nd>	62
2022_11_16	\Data_08_3	4_32_part	_XXX	
Mass Axis (alibration			
	Cal	E	30) sec 😫
Mass	TimeBin			
21.0220	16021	1	^	a 15017.1
203.9400	161630	1		b -52827
220 9500	220322	龠	22	

Acquisition Settings

Pioneer Park

11-17-22 Parameters Globeville and Elyra-Swansea

tanta and task and the second		• 🕗	
Setting	Odor	 Ø 	
Primary Ion	H3O+	~ <i>9</i>	
Transmission	DC		
	Man/Ctrl	Ctrl	
PC	352.6	352.58 mbar	
p Drift	2.30	2.29 mbar	
TofLens		4.79E-5 mbar	
TOF		7.06E-7 mbar	
E/N		120 Td	
Temps	80.00 °C	80.10 °C	
SrcValve	50.0 🚍		
H2O	6.0	6.00 sccm	
02	0.0	0.00 sccm	
NO	0.0	0.00 sccm	
lhc	4	4.0 mA	
	On/Off	On	
FCinlet	60.0	59.95 sccm	
U FU	°C D+	C+	
Us	150 🚍	145.0 V	
Uso	80 🚔	78.6 V	
Udrift	525	526.1 V	
	+ —	0 ×	
() Hex1	+ —	© ×	
Hex1	+ —] []] /ON ☑	OP ON	
Hex1 OFF Frequ	+ — 	 OP OP ON 6.00Mhz 	
Hex1 OFF, Frequ Ampli	4 — /ON ✓ ency 6.00 tude 95.0	OP ON 6.00Mhz \$8.4V	
Hex1 Frequ Offset	/ON / ency 6.00 tude 95.0	OP ON €.00Mhz \$8.4V \$8.4V	

Production Settings

3 🝺 🗖	18			MC	P 2
Lens 1	14.0	•	14.0 V		All on 🗹
Lens 2	30.0	\$	30.0 V		Lenses 🖂
Lens 3	20.0	+	20.0 V		
Lens 4	60.0	÷	60.0 V		
Lens 5	70.0	+	69.0 V		
Lens 6	80.0	*	80.0 V		
Lens 7	17.0	÷	17.0 V		
Push L	16.5	\$	16.0 V	\square	3 mA
Push H	790.0	\$	790.0 V	\square	2 mA
Pull L	80.0	+	80.0 V	\square	3 mA
Pull H	680.0	÷	680.0 V	\square	3 mA
Grid	2400.0	+	2283.0 V	\square	1 μA
Cage	5020.0	\$	4766 V	\square	99 µA
Refl. Grid	667.0	\$	634.0 V	\square	75 µA
Refl. Back	900.0	+	855.0 V	\square	167 µA
MCP F	5400	\$	5134 V	\square	17 µA
MCP B	2570	\$	2464 V		223 µA

TOF Voltages

Acquisition				AC	Q active
🍯 🖬 层					
Single Spec	Time (ms)	1000	÷		
Extraction	n time (µs)	5.0	4	3	72.1 amu
max Flig	httime(µs)	32.0	4	3	1.25 kHz
Data Save S	Settings				
Spec 🗹		Trace			Raw
Time Durat	ion				\sim
02:00:00 🖨	Single File	e Duratio	n		
12 🖨	Number	of Files To	o Sto	re	
C:\lonicon	data				(
Add File	Count Ext Q for new 1	ension file			
<year>_<n Data_<hou< td=""><td>nonth>_<c r>_<minut< td=""><td>lay>\ te>_<sec< td=""><td>ond</td><td></td><td></td></sec<></td></minut<></c </td></hou<></n </year>	nonth>_ <c r>_<minut< td=""><td>lay>\ te>_<sec< td=""><td>ond</td><td></td><td></td></sec<></td></minut<></c 	lay>\ te>_ <sec< td=""><td>ond</td><td></td><td></td></sec<>	ond		
2022_11_17	Data_09_2	7_35_par	t_XX	X	
Mass Axis C	alibration				
	Cal	I		30 se	c 😫
Mass	TimeBin			1	
21.0220	16038	Û	^	а	15021.7
203,9400	161691	Û		b	-52831.5
20010 100					

Acquisition Settings

Field Zero Counts

Globeville

Elyra-Swansea

11-18-22 PTR Parameters Adams City

Production Settings

🚰 📴 🗠			MCP	1 and 1
Lens 1	14.0	14.0 V		All on 🖂
Lens 2	30.0	30.0 V		Lenses 🖂
Lens 3	20.0	20.0 V		
Lens 4	60.0	60.0 V		
Lens 5	70.0	70.0 V		
Lens 6	80.0	80.0 V		
Lens 7	17.0	17.0 V		
Push L	16.5 韋	16.0 V		3 mA
Push H	790.0	790.0 V		2 mA
Pull L	80.0	80.0 V		3 mA
Pull H	680.0	680.0 V		3 mA
Grid	2400.0	2283.0 V		1 µA
Cage	5020.0	4766 V		99 µA
Refl. Grid	667.0	634.0 V		75 µA
Refl. Back	900.0	855.0 V		167 µA
MCP F	5400 😂	5134 V		17 µA
MCP B	2570	2463 V		225 µA

🛞 н	-		×
r P B	ł		
Hex1			OP
OFF/ON	\sim		ON
Frequency	6.00	1	6.00Mhz
Amplitude	95.0	-	58.4V
Offset -	0.70	-	-0.67V
<)

TOF Voltages

Acquisition				ACQ ac	tive
ii 🖓 🕞 🕞					
Single Spec	Time (ms)	1000	*		
Extraction	time (µs)	5.0		372.4 a	mu
max Flig	nttime(µs)	32.0		31.25	kHz
Data Save S	Settings				
Spec 🗹	\leq	Trace		Raw	
Time Durat	ion			~	
02:00:00 \$	Single File	e Duratio	n		
12 🤹	Number	of Files To	o Stor	e	
C:\lonicon\	data			0	
Add File	Count Ext Q for new 1	ension file			
<year>_<n Data_<hou< td=""><td>nonth>_<c r>_<minut< td=""><td>lay>\ te>_<sec< td=""><td>ond></td><td>B23</td><td></td></sec<></td></minut<></c </td></hou<></n </year>	nonth>_ <c r>_<minut< td=""><td>lay>\ te>_<sec< td=""><td>ond></td><td>B23</td><td></td></sec<></td></minut<></c 	lay>\ te>_ <sec< td=""><td>ond></td><td>B23</td><td></td></sec<>	ond>	B 23	
2022_11_17	Data_09_2	7_35_par	t_XXX		
Mass Axis C	alibration				
BEE	K Cal]	∠ 3	0 sec	-
Mass	TimeBin	<u>19</u>			
Mass 21.0220	TimeBin 16012	đ	^	a 1501	15.6
Mass 21.0220 203.9400	TimeBin 16012 161607	1		a 1501 b -5282	15.6 28.8

Acquisition Settings

Field Zero

Adams City

Initial Calibration Screen Shots 11-13-22

BTEX 250, 50, 20 and 5 ppb Cal

100, 50 and 10 ppb Alkenes Cal

125, 25, 10 and 5 ppb H_2S Cals

550-														
500-	en warder	Mar Shan	Here and											
400-	exclaiming	u de la Mar	ACCER AND											
350-														
300-														
250-				. attituente a lui	and a second designed	and a state of a state of								
200-				hadcaean	san san sa	a the second	4							
150-														
100-							prosperso	Cranth (Paris and a	the second second					
50-							Ţ			L	an the second	angunangu jaujan makananganga	and a state of a state	
2:26:40.01	PM 2:27:30.0 PM 22 11/13/2022	2:28:20.0 PM 11/13/2022	2:29:10.0 PM 11/13/2022	2:30:00.0 PM 11/13/2022	2:30:50.0 PM 11/13/2022	2:31:40.0 PM 11/13/2022	2:32:30.0 PM 11/13/2022	2:33:20.0 PM 11/13/2022	2:34:10.0 PM 11/13/2022	2:35:00.0 PM 11/13/2022	2:35:50.0 PM 11/13/2022	2:36:40.0 PM 11/13/2022	2:37:30.0 PM 11/13/2022	2:38:20.0 PM 11/13/2022

500, 250, 100 and 25 ppb Alkanes

APPENDIX E CALIBRATION GAS CERTIFICATION SHEETS

CERTIFICATE OF ANALYSIS

Grade of Product: CERTIFIED STANDARD-SPEC

Customer: M Part Number: Xi Cylinder Number: C Laboratory: 12 Analysis Date: D Lot Number: 12

MONTROSE AIR QUALITY SERVICES LLC X02NI99C15W0061 CC519990 124 - La Porte Mix - TX Dec 14, 2021 126-402278540-1 Expiration Date: Dec 14, 2024

Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: 126-402278540-1 144.3 CF 2015 PSIG 330

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS				
Component	Req Conc	Actual Concentration	Analytical Uncertainty	
HYDROGEN SULFIDE NITROGEN	1.000 PPM Balance	1.084 PPM	*/-5%	

Notes: MONTROSE AIR QUALITY SERVICES LLC PO3: PO018078

Signature on file Approved for Release

Page 1 of 1

Airgas Specialty Gases Airgas USA, LLC 616 Miller Cut Off Road La Porte, TX 77571 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: CERTIFIED STANDARD-SPEC

Customer: Part	*CRYSTAL LAKE , IL* MONTROSE AIR QUALITY SERVICES X06NI99C15A00A3	Reference Number:	126-402159020-1
Number: Cylinder	CC344804	Cylinder Volume:	144.3 CF
Number: Laboratory: Analysis	124 - La Porte Mix - TX Jul 30, 2021	Cylinder Pressure: Valve Outlet:	2015 PSIG 350
Date: Lot Number:	126-402159020-1 Expiration Date: Jul 30, 2024		
D d at an	monthing undfied by direct comparison to calibration standards trans	his to NICT which	and/or NICT

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS				
Component	Req Conc	Actual Concentration	Analytical	
		(Mole %)	Uncertainty	
HEXANE	1.000 PPM	0.9950 PPM	+/- 5%	
N BUTANE	1.000 PPM	1.002 PPM	+/- 5%	
N HEPTANE	1.000 PPM	1.000 PPM	+/- 5%	
N PENTANE	1.000 PPM	1.000 PPM	+/- 5%	
PROPANE	1.000 PPM	1.009 PPM	+/- 5%	
NITROGEN	Balance			

Notes:.

PO#PO-011307

Approved for Release

Page 1 of 126-402159020-1

Airgas USA, LLC 4646 Linden Rd Rockford, IL 61109 Airgas.com

CERTIFICATE OF BATCH ANALYSIS

Grade of Product: ZERO

Part Number: Cylinder Analyzed: Laboratory: Analysis Date: Lot Number:	AI Z15A CC235228 192 - Rockford IL Fill Plant (N513) - IL Mar 03, 2021 152-402047887-1	Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet:	152-402047887-1 146.0 CF 2000 PSIG 590		
ANALYTICAL RESULTS					

	1 84 92 883 8	Here Rester		
Component		Requested Purity	Certified Concentration	
AIR				
THC	<	1.0 PPM	0.043 PPM	
Percent Oxygen		20-22 %	20.82 %	
Moisture	<	3.0 PPM	0.07 PPM	
Cylinders in Batch:				

CC235228, XC002876B

Impurities verified against analytical standards traceable to NIST by weight and/or analysis.

Signature on file Approved for Release

Page 1 of 152-402047887-1

Airgan USA, LLC 6141 Easton Road Bidg 1 Plumsteadwille, PA 18949 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: CERTIFIED STANDARD-SPEC

Customer: Part Number: Cylinder Number: Laboratory: Analysis Date: Lot Number: MONTROSE ENVIRONMENTAL GROUP X02AI99C15AH586 ALM060589 124 - Plumsteadville - PA Feb 19, 2020 160-401735121-1 Expiration Date: Feb 19, 2023

Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet:

160-401735121-1 129.3 CF 2016 PSIG 590

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

	AN	VALYTICAL RESULTS	
Component	Req Conc	Actual Concentration	Analytical
BENZENE	1.000 PPM	1.055 PPM	+/- 5%
AIR	Balance		

Chil

an Air Liquide company

Airgas Specialty Gases Airgas USA, LLC 616 Miller Cut Off Road La Porte, TX 77571 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: CERTIFIED STANDARD-SPEC

Customer: MONTROSE AIR QUALITY SERVICES LLC - CRYSTAL

LAKE , Part X07NI99C15A00A9 Number: Cylinder CC164840. Number: Laboratory: 124 - La Porte Mix - TX Analysis Aug 09, 2021 Date: Lot Number: 126-402159021-1 Expiration Date: Aug 09, 2023

Reference Number:	126-402159021-1
Cylinder Volume:	144.3 CF
Cylinder Pressure: Valve Outlet:	2015 PSIG 350

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS					
Component Req Conc Actual Concentration Analytic					
		(Mole %)	Uncertainty		
1 BUTENE	1.000 PPM	0.9918 PPM	+/- 5%		
1 HEXENE	1.000 PPM	1.003 PPM	+/- 5%		
1 PENTENE	1.000 PPM	1.005 PPM	+/- 5%		
1,3 BUTADIENE	1.000 PPM	1.005 PPM	+/- 5%		
ETHYLENE	1.000 PPM	1.087 PPM	+/- 5%		
PROPYLENE	1.000 PPM	1.006 PPM	+/- 5%		
NITROGEN	Belance				

Notes:

MONTROSE AIR QUALITY SERVICES LLC PO#: PO-011307 NITROGEN BALANCE : 99.99939022%

Approved for Release

Page 1 of 126-402169021-1

THIS IS THE LAST PAGE OF THIS DOCUMENT

