

Prepared For:

MONTROS

Suncor Energy (U.S.A.) Inc. 5801 Brighton Boulevard Commerce City, CO 80022

Prepared By:

Montrose Air Quality Services, LLC 990 W 43rd Avenue Denver, CO 80211

Document Number: Report Period: Submittal Date: 085AA-013370-RT-111 2nd Quarter, 2022 August 15, 2022

TABLE OF CONTENTS

<u>SEC</u>	OITC	<u>N</u>	PAGE
EXE	CUT	IVE SUMMARY	3
1.0	INTF	RODUCTION	4
2.0	MOE	BILE SAMPLING PROGRAM	4
	2.1	Mobile Van Air Sampling Description	4
	2.2	Mobile Monitoring Van Air Sampling Methods	6
	2.3	Screening Health Risk Assessment Methods	7
3.0	SUN	IMARY AND DISCUSSION OF RESULTS	10
	3.1	Summary of Mobile Monitoring Van Results	10
	3.2	Screening Health Risk Assessment Results	10
	3.3	Uncertainty Evaluation	18
	3.4	Program Changes	18
LIST	T OF	APPENDICES	
А	ISON	MER CHEMICAL SAMPLING DETAILS	

- B DAILY WIND ROSES
- C SCREENING RISK ASSESSMENT DETAILS (ALPHABETICAL ORDER BY NEIGHBORHOOD NAME)
- D CALIBRATION AND QA/QC DATA
- E CALIBRATION GAS CERTIFICATION SHEETS

LIST OF TABLES

2-1	MOBILE MONITORING VAN PROGRAM CHEMICALS	5
2-2	NEIGHBORHOOD MONITORING PROGRAM DETAILS	6

LIST OF FIGURES

	MOBILE MONITORING VAN PROGRAM ROUTE THROUGH SIX NEIGHBORHOOD AREAS	7
3-1	ADAMS CITY NEIGHBORHOOD: JUNE 2, 2022	.12
3-2	DUPONT NEIGHBORHOOD: JUNE 3, 2022	.13
3-3	ELYRA-SWANSEA NEIGHBORHOOD: JUNE 5, 2022	.14
3-4	GLOBEVILLE NEIGHBORHOOD: JUNE 5, 2022	.15
3-5	PIONEER PARK NEIGHBORHOOD: JUNE 1, 2022	.16
3-6	WESTERN HILLS NEIGHBORHOOD: JUNE 4, 2022	.17

EXECUTIVE SUMMARY

In response to feedback received by Suncor Energy (U.S.A.) Inc. (Suncor) through community engagement conducted in the fall of 2020, Suncor voluntarily committed to developing a continuous, near real-time air monitoring program to gain insight into air quality for neighborhoods in the vicinity of the Suncor refinery in Commerce City, Colorado. Montrose Environmental Group - Air Quality Services, LLC (Montrose) was contracted by Suncor to deploy, operate and maintain the network in the Commerce City and North Denver (CCND) neighborhoods. Air monitoring was accomplished through three separate technical approaches: (1) continuous, near real-time monitoring for the following analytes¹: carbon monoxide (CO), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), nitric oxide or nitrogen oxide (NO), nitrogen dioxide (NO₂), particulate matter (PM_{2.5}) and total volatile organic compounds (VOCs); (2) periodic collection and laboratory analysis for the presence of specific VOCs from Summa canisters; and (3) periodic real-time air monitoring throughout neighborhoods using a mobile monitoring van to detect the presence of specific VOCs and hydrogen sulfide (H₂S). This report details approach number three, the periodic real-time air monitoring through six neighborhoods with the mobile monitoring van and a screening health risk analysis of the detected chemicals. Continuous real-time air monitoring and Summa canister sampling data are presented in separate reports.

The mobile monitoring van contains the equipment necessary to identify and quantitate individual chemicals present in ambient air at ultra-low concentrations. This equipment measures and reports concentrations of select chemicals at sub-parts per billion (ppb) levels and as quickly as one measurement per second. During the monitoring period, the mobile monitoring van followed a dense route through each of the six CCND residential neighborhoods that fall within a three-mile radius around the refinery. Accessible streets in the monitored neighborhoods were traversed at approximately 10 miles per hour (MPH) while collecting a data point for each chemical every 1 second. During the second quarter 2022 sampling period (June 1 – June 5), the mobile monitoring van was in a total of six neighborhoods and collected more than 73,600 data points across five days of monitoring, resulting in approximately 51,099, 1-hour rolling average concentrations. Meteorological conditions were also reported in real time.

Health scientists from CTEH, LLC (CTEH[®]) (a subsidiary company of Montrose) performed a screening-level human health risk assessment based on the data collected by Montrose. This evaluation was consistent with federal and state risk assessment guidelines and was conducted to determine whether the estimated 1-hour maximum measured concentrations of individual or cumulative (combined) VOCs could potentially pose acute (short-term) health hazards. The air monitoring data and health risk assessment indicate:

- Air monitoring data and health risk assessment indicate all measured individual and combined air concentrations were below their respective acute health reference levels in all neighborhoods.
- Results indicate the measured concentrations are likely to be without any appreciable risk of adverse acute health effects, even for sensitive sub-populations.

¹ An "analyte" is a material that a measuring device is designed to detect and measure. It may be a chemical gas, an airborne particle, or other type of material.

1.0 INTRODUCTION

In response to feedback received by Suncor Energy (U.S.A.) Inc. (Suncor) through community engagement conducted in the fall of 2020, voluntarily committed to developing a continuous, near real-time air monitoring program to gain insight into air quality for neighborhoods in the vicinity of the Suncor refinery in Commerce City, Colorado. Montrose Environmental Group - Air Quality Services, LLC (Montrose) was contracted by Suncor to deploy, operate and maintain the network in the Commerce City and North Denver (CCND) neighborhoods. Air monitoring was accomplished through three separate technical approaches: (1) continuous, near real-time stationary monitoring for the following analytes: carbon monoxide (CO), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), nitric oxide or nitrogen oxide (NO), nitrogen dioxide (NO₂), particulate matter (PM_{2.5}) and total volatile organic compounds (VOCs); (2) periodic collection and laboratory analysis for the presence of specific VOCs from Summa canisters; and (3) periodic real-time air monitoring throughout neighborhoods using a mobile monitoring van to detect the presence of specific chemicals. An "analyte" is a material that a measuring device is designed to detect and measure. It may be a chemical gas, an airborne particle, or other type of material. This report details approach number three. The continuous real-time community air monitoring and Summa canister sampling data are presented in separate reports. Air monitoring, sampling and analysis from approaches (1) and (2) were conducted in accordance with the Quality Assurance Project Plan (QAPP) that can be found online at ccnd-air.com/documents.

2.0 MOBILE SAMPLING PROGRAM

2.1 Mobile Van Air Sampling Description

The mobile monitoring van is a Mercedes 2500 Sprinter Van outfitted with equipment necessary to identify and quantitate individual chemicals present in ambient air to ultra-low concentrations. The mobile monitoring van is equipped with an Ionicon Model 6000-X2 proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). This instrument provides concentrations of select chemicals at sub-parts per billion (ppb) levels and as quickly as one measurement per second. The mobile monitoring van is outfitted with an external sampling system, which transports ambient air from outside of the van into the PTR-TOF-MS sample inlet for immediate real-time analysis. The entire sampling system is comprised of Teflon or Teflon-coated materials, which ensures the lowest amount of sample loss due to surface absorption of chemical molecules. The mobile monitoring van incorporates a high-precision global positioning system (GPS), a sonic anemometer to measure wind direction and wind velocity and other incorporated meteorological (MET) sensors.

During the mobile monitoring program, the list of 65 chemicals in Table 2-1 were measured to determine the instantaneous ambient concentrations. This list of chemicals was compiled based on the typical chemicals that are monitored in urban and industrial areas and the mobile monitoring van analysis capabilities.

The mobile monitoring van followed a driving route through each of the six CCND residential neighborhoods that fall within a three-mile radius around the refinery operations. Accessible streets in the neighborhoods were traversed at approximately 10 MPH while collecting a data point every 1 second. The details of the monitored neighborhoods are listed in Table 2-2 and are shown in Figure 2-1.

Propane	2-Methylhexane	Ethane	Methyl-cyclopentane	o-Ethyltoluene (2- ethyltoluene)
1,3-Butadiene	2-Methylpentane	Ethylbenzene	m-Ethyltoluene	p-Diethylbenzene (1,4-diethylbenzene)
1-Butene	3-Methylheptane	Ethylcyclohexane	m/o/p-Xylenes	p-Ethyltoluene (4- ethyltoluene)
1-Hexene	3-Methylhexane	Ethylene	n-Butane	1,2,4- trimethylbenzene
1-Pentene	3-Methylpentane	Hydrogen Cyanide	n-Decane	Propylene (Propene)
Styrene	Acetylene	Hydrogen Sulfide	n-Dodecane	2,2,4- Trimethylpentane
2,2-Dimethylbutane	Benzene	i-Butane	n-Heptane	Tetrachloroethylene
Toluene	Carbon disulfide	i-Pentane	n-Hexane	2,3,4- Trimethylpentane
2,3-Dimethylbutane	trans-2-Butene	Isopentane	n-Nonane	trans-1,2- Dimethylcyclohexane
2,3-Dimethylpentane	cis-2-Butene	Isoprene	n-Octane	trans-1,3- Dimethylcyclohexane
2,4-Dimethylpentane	cis-2-Pentene	m-Diethylbenzene	n-Pentane	cis-1,3- dimethylcyclohexane
2-Methyl-2-butene	Cumene	Methanol	n-Propylbenzene	trans-2-Pentene
2-Methylheptane	Cyclohexane	Methyl-cyclohexane	n-Undecane	Cyclopentane

TABLE 2-1 MOBILE MONITORING VAN PROGRAM CHEMICALS²

-

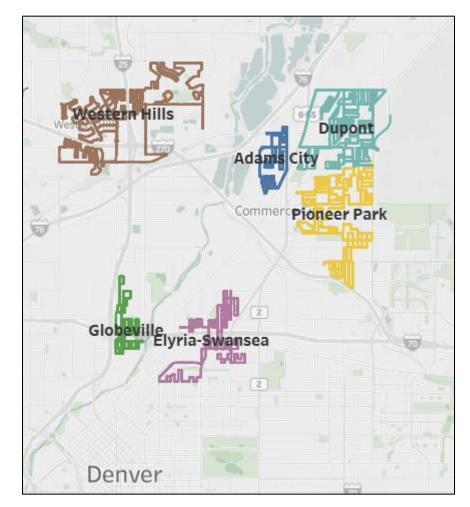
² See Appendix A for isomer analysis details

Neighborhood	Area (square miles)	Sampling Date	Start Time	End Time	Total Data Points Collected	Total Hourly Rolling Averages Calculated*
Adams City	0.41	06/02/22	14:06	16:20	8,049	4,450
Dupont	1.4	06/03/22	10:32	14:50	15,460	11,861
Elyria-Swansea	1.2	06/05/22	11:36	14:11	9,215	5,167
Globeville	0.44	06/05/22	09:05	11:13	7,675	4,076
Pioneer Park	1.7	06/01/22	10:21	15:23	18,047	13,951
Western Hills	1.6	06/04/22	09:41	13:53	15,193	11,594

TABLE 2-2NEIGHBORHOOD MONITORING PROGRAM DETAILS

*Data completeness was set at 98% for Elyria-Swansea and Pioneer Park neighborhoods to correct for time variations.

2.2 Mobile Monitoring Van Air Sampling Methods


The PTR-TOF-MS calibration was checked, and the instrument was zeroed each day prior to collection of any ambient air data. The instrument was calibrated using United States Environmental Protection Agency (USEPA) protocol certified calibration gases. The multichemical cylinder standards were used to generate multiple point calibration curves for each commercially available chemical present in the standard. Note: Not all chemicals listed in Table 2-1 are available as certified calibration gases. The chemical dilutions were made using an Environics Model 4040 gas dilution system. The gas dilution system was validated using the appropriate USEPA methodology (40 Code of Federal Regulation Part 51 Appendix M, Method 205). Zero-count measurements were obtained to ensure proper baseline measurements were incorporated into the calculation of each chemical's concentration. Zero-count measurements were performed through the entire sampling system using ultra-high purity air. Post-testing calibration checks were performed on the instrument to ensure there was no significant drift during the course of the sampling event. Drift can cause an increase or decrease in the measured chemical concentrations, which can lead to both positive and negative biasing of the obtained results.

The mobile monitoring van collected continuous measurements throughout each neighborhood following the routes shown in Figure 2-1. Measurements that were collected from transition periods or from moving between neighborhoods were excluded in this assessment.

The measurements were collected from the ambient environment at a height of 15 feet above grade at approximately 8 liters per minute using a Teflon-coated sampling boom and pump. The PTR-TOF-MS sampled a slip stream of this flow at approximately 100 ml/min. The sample was

introduced into the reaction tube of the PTR-TOF-MS and results were collected in 1-second intervals. See the attached Appendix D for specific PTR-TOF-MS instrument operation conditions.

FIGURE 2-1 MOBILE MONITORING VAN PROGRAM ROUTE THROUGH SIX NEIGHBORHOOD AREAS

2.3 Screening Health Risk Assessment Methods

CTEH[®] conducted a screening-level public health risk assessment, consistent with federal risk assessment guidelines, to determine whether exposure to the detected concentrations of individual or cumulative (combined) chemicals in the air could potentially pose acute (short-term) health impacts. A tiered approach to the risk assessment was used. This approach involves one or more iterative steps (or tiers) being performed in which health risks are calculated and evaluated multiple times. In most cases, risk assessors cannot know exactly the level of chemical exposure experienced by individuals or communities. Therefore, the first tier involves use of exposure potential are plugged into the risk calculations. These are worst-case scenarios that typically represent exposure conditions higher than would be reasonably expected. Such calculations are very simple and assume a person is constantly exposed to the highest one hour rolling average concentration for each detected chemical. If the resulting risk values indicate the

lack of likely acute adverse health effects under these worst-case conditions, then the risk assessment is complete. However, if the risk values suggest a potential for acute adverse health effects, then a second tier of risk calculations are performed, but this time using more detailed assumptions about exposure that are still simple representations of the real world but are more realistic than the first-tier worst-case assumptions. Each successive tier represents a more complete characterization of exposure variability and/or uncertainty that requires a corresponding increase in calculation complexity and scientific level of effort.

The first tier of this risk assessment process is called a screening-level risk assessment. The conservative assumptions used for this level of risk calculation typically represent exposure conditions higher than would be reasonably expected. As such, an exceedance of an acceptable risk level (defined below) does not necessarily indicate that adverse health effects are likely. The Agency for Toxic Substances and Disease Registry (ATSDR) states, "when health assessors find exposures higher than the MRLs (ATSDR's specific health-based reference levels), it means that they may want to look more closely at a site"³. In other words, screening-level findings of an estimated exposure to a specific or cumulative set of chemical(s) being higher than its reference level (RL) does NOT indicate an actual likelihood of adverse effects but does indicate a need to move to a second tier of analysis and refine the risk assessment process with more realistic detail to determine if an actual risk exists that needs to be mitigated.

The screening-level risk assessment reported here includes calculated acute risks from exposure to individually measured chemicals as well as exposure to all measured chemicals at once (cumulative). For individual chemicals, an acute health risk value was calculated as the exposure concentration (EC) divided by the chemical-specific federal or state established acute RL (Equation 1). The result is referred to as the hazard quotient (HQ). Estimates of EC were derived from 1-hour rolling average concentrations of each chemical for the entire measurement time in an individual CCND neighborhood. The RLs used to calculate the HQs are previously established exposure levels below which no adverse effect in humans is expected. If available, RLs adopted by the Colorado Department of Public Health and Environment (CDPHE) were selected for use within this assessment and include ATSDR acute minimum risk levels (MRL), California EPA Office of Environmental Health Hazard Assessment (OEHHA) acute risk levels and Texas Commission on Environmental Quality (TCEQ) acute exposure guideline levels. If the chemical was not listed by CDPHE, a federal and state recommended hierarchy for selection of RLs was used⁴. For chemical isomer groups which were unable to be differentiated the lowest, most health-protective RL of the isomer group was selected for use in this assessment.

³https://www.atsdr.cdc.gov/minimalrisklevels/#:~:text=The%20ATSDR%2C%20in%20response%20to,minimal%20risk%20levels%2 0(MRLs)

⁴ <u>https://drive.google.com/file/d/1P2KEvu0MFiyzQAOQtjQUclqR-WGh1bEX/view</u>

Acute HQs were calculated as follows:

Eq. 1 – Hazard Quotient (HQ) Equation

HQ= EC/ RL

Where:

HQ= Hazard Quotient

EC= Maximum 1-hour rolling average air concentration RL= Acute Health-based Reference Level (ATSDR, Cal EPA OEHHA and TCEQ)

Health risks from potential cumulative exposures to all detected chemicals were calculated by adding together each individual chemical's HQ calculated for a given neighborhood. The sum of all the individual HQs is called a Hazard Index (HI). Adding together all the HQs is also a very health-conservative approach because it assumes that all the measured chemicals exert an adverse effect on the body in a similar manner, which is rarely the case.

An HQ or HI of less than or equal to one is an indication that the estimated exposure is likely to be without an appreciable risk of adverse acute health effects, even for sensitive sub-populations. The potential for adverse health effects increases as HQ or HI increase above one, but it is not known by how much. HQ or HI values of greater than one would prompt a second-tier risk assessment beyond the screening-level assessment.

According to the USEPA and ATSDR, the federal agencies that establish these RLs, these values *"are set below levels that, based on current information, might cause adverse health effects in the people most sensitive."*⁵ This is because RLs are based on observed toxicity in human or animal studies with an added safety factor to account for uncertainties and variabilities in the toxicity data. For example, ATSDR identified the lowest observed adverse effect level (LOAEL) for acute exposure to benzene as 10,200 parts per billion (ppb), based on a study of mice exposed six hours per day for six days. ATSDR then applied a combined safety factor of 300 to derive the final RL to account for several uncertainties, including differences between mice and humans and for sensitive individuals. Therefore, it is scientifically incorrect to assume that all real-world exposures to a chemical at levels higher than a RL will likely result in an adverse effect.

Using the maximum 1-hour rolling average for the EC conservatively assumes that a hypothetical maximally exposed individual occupies the monitored neighborhood and breathes the maximum 1-hour detected concentration continuously for an hour up to multiple days (an acute exposure). A 1-hour average concentration is more appropriate than a 1-second or 1-minute concentration for use in an acute health risk assessment. This is because 1-second exposures to the chemicals measured in this study do not cause adverse effects unless the levels are extremely high (i.e., tens of thousands to millions of ppb). Guidance values for use in emergency situations with extremely elevated levels of these chemicals are available and are discussed below. Across all neighborhoods, 51,099 1-hour rolling averages of chemical concentrations were calculated to derive the estimated ECs (Table 2-2). The range between the average and maximum rolling 1-hour average values provides a robust estimate of plausible outdoor exposures of persons

 $https://www.atsdr.cdc.gov/mrls/index.html \#: \sim: text = ATSDR\%20 uses\%20 the\%20 no\%20 observed, to\%20 substance\%20 induced\%20 effects.$

occupying the monitored neighborhood while the mobile monitoring van was present (Figures 3-1 to 3-8).

The USEPA also has established values for use in emergency situations, termed Acute Exposure Guideline Levels (AEGLs). Unlike RLs that can be thousands of times below exposure levels where adverse effects are observed, AEGL values are levels at which different acute adverse health effects may be anticipated to occur. According to USEPA, "*AEGL-1 represent exposure levels that could produce mild and progressively increasing but transient and non-disabling odor, taste and sensory irritation or certain asymptomatic, non-sensory effects. With increasing airborne concentration above each AEGL, there is a progressive increase in the likelihood of occurrence and the severity of effects described for each corresponding AEGL [i.e., AEGL-2 or AEGL-3]."⁶ The AEGL-1 60-minute value, if available for the applicable chemical, was also used for comparison purposes because it is more precautionary (than AEGL-2 or AEGL-3) as the AEGL-1 level reflects protecting against acute health effects that are reversible upon cessation of exposure.*

3.0 SUMMARY AND DISCUSSION OF RESULTS

3.1 Summary of Mobile Monitoring Van Results

A summary of mobile monitoring van results by neighborhood can be found in Table 2-2. Over five days, six neighborhoods were monitored for 65 chemicals, collecting more than 73,600 total data points. Individual neighborhood results are detailed in Figures 3-1 through 3-6. Each figure shows a map of the monitoring locations within each neighborhood, the chemicals that resulted in the top five calculated acute HQs and time profiles of the measured levels of these chemicals. The time profiles show all the 1-second data (orange) and calculated 1-hour rolling averages (green) of the monitoring data. Each green 1-hour average data point shown in these profiles reflects all the 1-second measurements collected over the previous hour. Thus, 1-hour rolling average values are shown on the time profiles only after one hour of data collection (Figure 3-1 through 3-6).

Wind roses for each sampling day are provided in Appendix B. The data used to derive the wind roses were collected from the CCND community sensor location most local to the neighborhood being monitored on each day because the stationary source of MET data is more reliable than the MET station on the mobile monitoring van when the lab is moving.

3.2 Screening Health Risk Assessment Results

Acute health risks were calculated for each neighborhood. According to USEPA guidelines, an acute HQ or HI less than or equal to one (1) indicates that exposures are likely to be without any acute adverse health effects, even for sensitive sub-populations.

Maximum 1-hour rolling average concentrations for 65 chemicals measured in each neighborhood were compared to acute RLs to derive HQs. Figures 3-1 through 3-6 show concentrations of chemicals over the sampling time and summaries of results for chemicals resulting in the five highest HQs by neighborhood (if available). The estimated HI values (if available) shown in Figures 3-1 through 3-6 were calculated by summing the HQs of all detected chemicals measured

⁶ https://www.epa.gov/aegl/about-acute-exposure-guideline-levels-aegls

in a given neighborhood. The graphs in these figures indicate whether a maximum HQ was ever greater than one (yellow dots) or less than one (green dots) for any measured chemical. If any measured chemical resulted in a HQ greater than 1, then a separate figure would be shown for that chemical alone. Complete results for HQs for all chemicals detected in each neighborhood are available in Appendix C.

In conclusion, the data collected during this study phase did not indicate a potential for acute adverse health effects from exposure to the measured chemicals, both individually and combined.

- All HQs were less than one for all detected chemicals, indicating that the maximum 1-hour rolling average concentration for each chemical was below its respective acute RL in all six neighborhoods (Figure 3-1 through 3-6).
- In this quarter, benzene, tetrachloroethylene, hydrogen sulfide, hexene group, hydrogen cyanide and trimethylbenzene group were the chemicals or isomer groupings resulting in the highest HQ in each neighborhood, accounting for over 75% of the total calculated HI value. However, all HI values calculated in all six neighborhoods were below one (Figures 3-1 through 3-6).
- These results indicate that the measured concentrations of chemicals, both individually and cumulative (combined), are likely to be without an appreciable risk of acute adverse health effects, even for sensitive sub-populations.

FIGURE 3-1 ADAMS CITY NEIGHBORHOOD: JUNE 2, 2022

FIGURE 3-2 DUPONT NEIGHBORHOOD: JUNE 3, 2022

Analyte 두	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Ro Average (ppb		AEGL-1 60-min Value (ppbv)	Health Reference Level (ppbv)	Hazard Quotient
BENZENE	4.87	11,861	0.33	0.43		52,000	9	0.04793
TETRACHLOROETHYLENE	1.53	11,861	0.01	0.03		35,000	6	0.00532
HYDROGEN SULFIDE	1.35	11,861	0.20	0.36		510	70	0.00515
HEXENES*	16.91	11,861	1.47	1.86		NR	500	0.00371
HYDROGEN CYANIDE	1.44	11,861	0.21	0.34		2,000	308	0.00110
(6-85)				Analyte		Hazard Inde	x for All Detected Compo	unds: 0.06759
	MA	лпт	T	Conc. (BUDY	30 ⁻ 20- 10- 0_			
E-77th Ave			ebec.Pkwy		30 20- 10- 0_	s		
			Diste	HYDROGEN	30 ⁻ 20- 10-			
	1V4			HEXENES*	30 ⁻ 20- 10-	i Marana ka ka ka	n en en en el i	an is a subs
Durling - State H				HYDROGEN	30 ⁻ 20- 10- 0_			1 · · · · · ·
© 2022 Mapbox © OpenStreet	Мар	abec Pkwy		1-hr Rolling Av	/erage	11:00 12 Concentration	:00 13:00	14:00 15:00

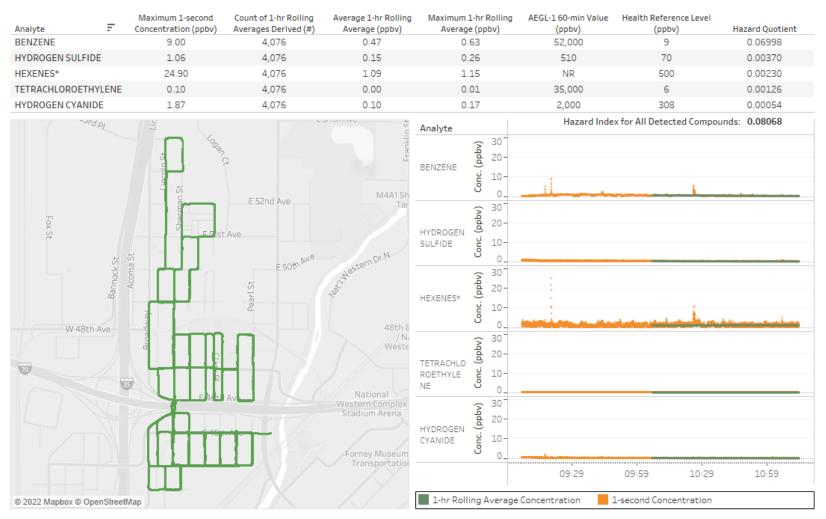


FIGURE 3-3 ELYRA-SWANSEA NEIGHBORHOOD: JUNE 5, 2022

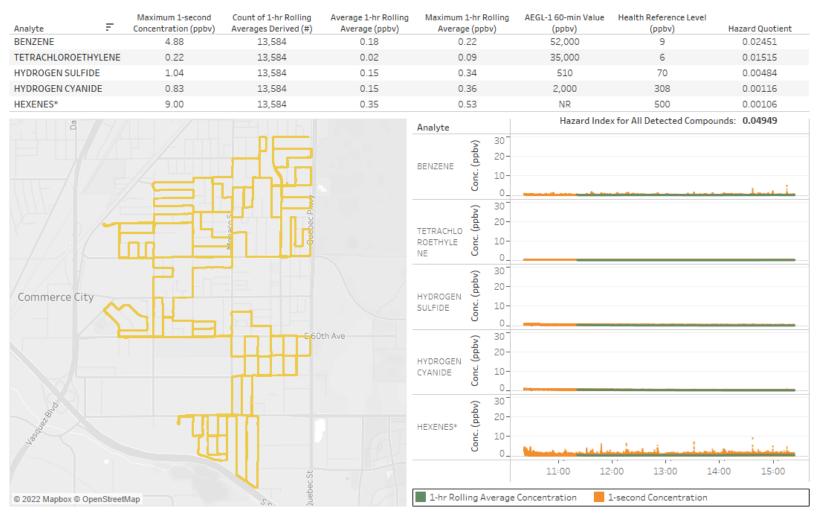


FIGURE 3-4 GLOBEVILLE NEIGHBORHOOD: JUNE 5, 2022

FIGURE 3-5 PIONEER PARK NEIGHBORHOOD: JUNE 1, 2022

FIGURE 3-6 WESTERN HILLS NEIGHBORHOOD: JUNE 4, 2022

Analyte 📮	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL-1 60-min Value (ppbv)	Health Reference Level (ppbv)	Hazard Quotient
BENZENE	4.48	11,594	0.32	0.40	52,000	9	0.04496
TETRACHLOROETHYLENE	0.15	11,594	0.02	0.05	35,000	6	0.00788
HEXENES*	15.39	11,594	2.12	2.48	NR	500	0.00495
HYDROGEN SULFIDE	0.81	11,594	0.11	0.21	510	70	0.00296
TRIMETHYLBENZENES*	9.11	11,594	0.28	0.38	50,000	250	0.00150
TRIME I HYLBENZEWES*				Analyte 30 BENZENE 4 BENZENE 30 U 10 0 0 TETRACHLO 0 NE 0 Mail 20 TETRACHLO 0 NE 0 Mail 20 ID 0 Mail 20 ID 0 ID		ex for All Detected Compo	unds: 0.06620
© 2022 Mapbox © OpenStree	tMap			1-hr Rolling Average	10:00 11:0	12:00	13:00 14:00

3.3 Uncertainty Evaluation

Scientific uncertainty is inherent in each step of the risk assessment process because all risk assessments incorporate a variety of assumptions and professional judgments. Therefore, the acute hazard estimates presented in this assessment are estimates of risk due to a number of assumptions about exposure and toxicity. This screening-level risk assessment relied on a combination of health-protective exposure scenarios and input values (i.e., high-end exposures and conservative selection of lowest reference value per isomer). Because of these assumptions, the estimates of acute hazards are themselves uncertain but likely to be over-estimates of actual risk.

This risk assessment did not address past or present health outcomes associated with current or past exposures. As such, this risk assessment cannot be used to make realistic predictions of biological effects and/or used to determine whether someone is ill (cancer or other adverse health effects) due to past or current exposures. This risk assessment was limited to inhalation exposures from outdoor exposures to all potential sources.

3.4 **Program Changes**

No program changes occurred during this reporting period.

Respectfully Submitted:

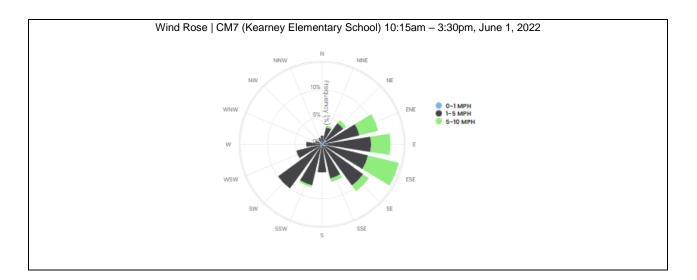
Here spicks

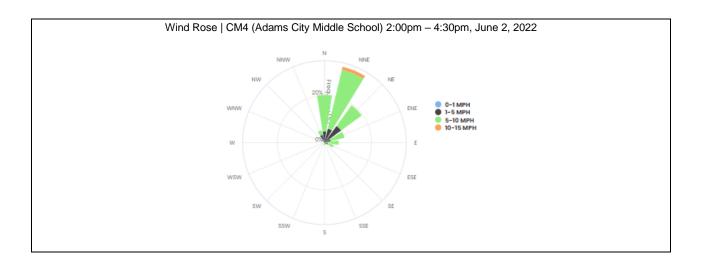
Steven Yuchs, PhD. Vice President, Technical Ambient & Emerging Technology Montrose Air Quality Services

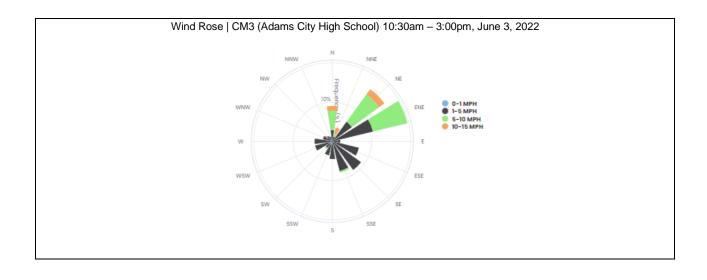
Michael H. Lumphin

Michael Lumpkin, PhD, DABT Senior Toxicologist CTEH®, LLC

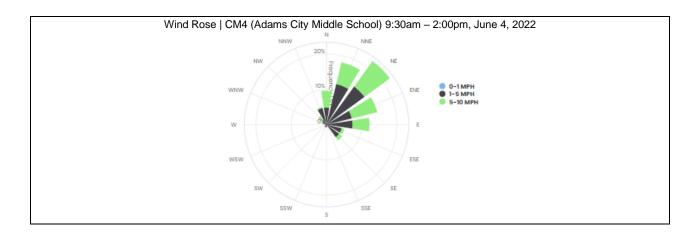
APPENDIX A ISOMER CHEMICAL SAMPLING DETAILS

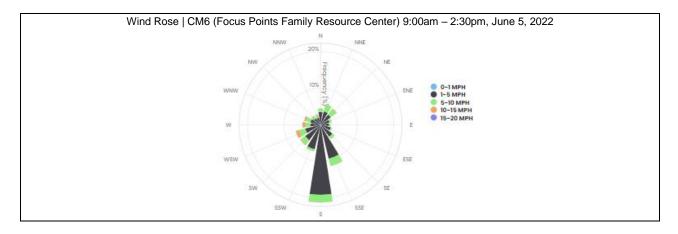

In a real-time PTR-TOF analysis, it is not possible to speciate isomers, or chemical compounds that have the same molecular weight. For example, n-hexane, 2-methyl pentane and 2,2-dimethyl butane all have a molecular mass of 86.178 g/mol. In order to provide the most conservative determination of concentration during this mapping program, each isomer's concentration is reported as the sum of all isomers with the same molecular weight. For the sake of simplicity, the calculations in the report refer to generic names for a group of specific isomers. The following table defines which isomers comprise each generic group.


Group Name	Specific Isomers	Group Name	Specific Isomers
Butenes	1-Butene	Xylenes	Ethyl Benzene
	cis-2-Butene		o-Xylene
	trans-2-Butene		m-Xylene
			p-Xylene
Butanes	iso-Butane		
	n-Butane	Dimethylcyclohexanes	Ethylcyclohexane
			cis-1,3-Dimethylcyclohexane
	C de la contractione		trans-1,2-
Cyclopentanes	Cyclopentane 1-Pentene		Dimethylcyclohexane
	2-Methyl-2-butene		trans-1,3- Dimethylcyclohexane
	cis-2-Pentene		Dimetrylcyclonexarie
	trans-2-Pentene	Octanes	n-Octane
		Octancs	2-Methylheptane
Pentanes	iso-Pentane		3-Methylheptane
r entancs	n-Pentane		2,2,4-Trimethylpentane
	neo-Pentane		2,3,4-Trimethylpentane
			2,0,1
Hexenes	1-Hexene	Trimethylbenzenes	Cumene
	Cyclohexane		1,2,4-Trimethylbenzene
	Methylcyclopentane		o-Ethyltoluene
			m-Ethyltoluene
Hexanes	n-Hexane		p-Ethyltoluene
	2-Methylpentane		n-Propylbenzene
	3-Methylpentane		
	2,2-Dimethylbutane	Diethylbenzenes	o-Diethylbenzene
	2,3-Dimethylbutane		m-Diethylbenzene
			p-Diethylbenzene
Heptanes	n-Heptane		
	2-Methylhexane		
	3-Methylhexane		
	2,3-		
	Dimethylpentane		
	2,4-		
	Dimethylpentane		



APPENDIX B DAILY WIND ROSES





APPENDIX C SCREENING RISK ASSESSMENT DETAILS (ALPHABETICAL ORDER BY NEIGHBORHOOD NAME)

Mobile Laboratory Sampling Data Summary and Risk Assessment

Adams City Neighborhood | June 2, 2022

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	8,049	0.25	4,450	0.05	0.06	670,000	298	OEHHA Acute REL	0.00020
ACETYLENE	74-86-2	8,049	0.91	4,450	0.15	0.19	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	8,049	17.75	4,450	0.37	0.48	52,000	9	ATSDR Acute MRL	0.05376
BUTANES*	75-28-5	8,049	26.30	4,450	1.03	1.18	NR	33,000	TCEQ Short-Term AMCV Health	0.00004
BUTENES*	590-18-1	8,049	86.36	4,450	2.21	2.98	NR	15,000	TCEQ Short-Term AMCV Health	0.00020
CARBON DISULFIDE	75-15-0	8,049	0.06	4,450	0.01	0.01	13,000	1,990	OEHHA Acute REL	0.00001
CYCLOPENTANES*	287-92-3	8,049	110.94	4,450	1.10	1.72	NR	5,900	TCEQ Short-Term AMCV Health	0.00029
DECANE	124-18-5	8,049	0.41	4,450	0.21	0.27	NR	1,000	TCEQ Short-Term AMCV Health	0.00027
DIETHYLBENZENES*	141-93-5	8,049	0.26	4,450	0.03	0.04	NR	450	TCEQ Short-Term AMCV Health	0.00008
DIMETHYLCYCLOHEXANES*	638-04-0	8,049	0.39	4,450	0.02	0.02	NR	4,000	CDPHE	0.00001
DODECANE	112-40-3	8,049	0.01	4,450	0.00	0.00	NR	1,720	CDPHE	0.00000
ETHYLENE	74-85-1	8,049	6.32	4,450	5.69	5.71	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	8,049	0.24	4,450	0.09	0.09	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	8,049	0.37	4,450	0.04	0.04	NR	5,400	TCEQ Short-Term AMCV Health	0.00001
HEXENES*	592-41-6	8,049	61.91	4,450	1.05	1.40	NR	500	TCEQ Short-Term AMCV Health	0.00281
HYDROGEN CYANIDE	74-90-8	8,049	3.32	4,450	0.20	0.26	2,000	308	OEHHA Acute REL	0.00085
HYDROGEN SULFIDE	7783-06-4	8,049	0.67	4,450	0.17	0.21	510	70	ATSDR Acute MRL	0.00301
ISOPRENE	78-79-5	8,049	3.49	4,450	0.70	0.94	NR	1,400	TCEQ Short-Term AMCV Health	0.00067
METHANOL	67-56-1	8,049	28.45	4,450	3.02	3.48	530,000	21,366	OEHHA Acute REL	0.00016
METHYLCYCLOHEXANE	108-87-2	8,049	0.52	4,450	0.05	0.05	NR	4,000	TCEQ Short-Term AMCV Health	0.00001
NONANE	111-84-2	8,049	0.08	4,450	0.03	0.03	NR	3,000	TCEQ Short-Term AMCV Health	0.00001
OCTANES*	111-65-9	8,049	3.58	4,450	0.06	0.09	NR	4,100	TCEQ Short-Term AMCV Health	0.00002
PENTANES*	109-66-0	8,049	0.14	4,450	0.01	0.01	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	8,049	12.41	4,450	0.30	0.35	NR	NA	NA	NC
STYRENE	100-42-5	8,049	0.54	4,450	0.21	0.23	20,000	5,000	ATSDR Acute MRL	0.00005
TETRACHLOROETHYLENE	127-18-4	8,049	0.50	4,450	0.03	0.04	35,000	6	ATSDR Acute MRL	0.00624
TOLUENE	108-88-3	8,049	36.21	4,450	0.69	0.88	67,000	2,000	ATSDR Acute MRL	0.00044
TRIMETHYLBENZENES*	622-96-8	8,049	5.01	4,450	0.24	0.29	50,000	250	TCEQ Short-Term AMCV Health	0.00118
UNDECANE	1120-21-4	8,049	0.14	4,450	0.06	0.06	NR	550	TCEQ Short-Term AMCV Health	0.00012
XYLENES*	1330-20-7	8,049	29.15	4,450	1.23	1.52	130,000	2,000	ATSDR Acute MRL	0.00076
									Hazard Index	0.07121

NR= According to EPA, AEGL is "not recommended due to insufficient data" NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment

Dupont Neighborhood | June 3, 2022

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	15,460	1.80	11,861	0.02	0.07	670,000	298	OEHHA Acute REL	0.00024
ACETYLENE	74-86-2	15,460	1.31	11,861	0.13	0.26	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	15,460	4.87	11,861	0.33	0.43	52,000	9	ATSDR Acute MRL	0.04793
BUTANES*	75-28-5	15,460	96.06	11,861	3.37	3.92	NR	33,000	TCEQ Short-Term AMCV Health	0.00012
BUTENES*	590-18-1	15,460	22.82	11,861	2.26	2.82	NR	15,000	TCEQ Short-Term AMCV Health	0.00019
CARBON DISULFIDE	75-15-0	15,460	1.87	11,861	0.01	0.05	13,000	1,990	OEHHA Acute REL	0.00003
CYCLOPENTANES*	287-92-3	15,460	28.78	11,861	2.41	2.96	NR	5,900	TCEQ Short-Term AMCV Health	0.00050
DECANE	124-18-5	15,460	1.81	11,861	0.11	0.20	NR	1,000	TCEQ Short-Term AMCV Health	0.00020
DIETHYLBENZENES*	141-93-5	15,460	1.83	11,861	0.01	0.05	NR	450	TCEQ Short-Term AMCV Health	0.00012
DIMETHYLCYCLOHEXANES*	638-04-0	15,460	1.85	11,861	0.01	0.06	NR	4,000	CDPHE	0.00001
DODECANE	112-40-3	15,460	1.88	11,861	0.00	0.04	NR	1,720	CDPHE	0.00002
ETHYLENE	74-85-1	15,460	7.48	11,861	4.95	5.03	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	15,460	1.84	11,861	0.07	0.12	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	15,460	1.84	11,861	0.04	0.09	NR	5,400	TCEQ Short-Term AMCV Health	0.00002
HEXENES*	592-41-6	15,460	16.91	11,861	1.47	1.86	NR	500	TCEQ Short-Term AMCV Health	0.00371
HYDROGEN CYANIDE	74-90-8	15,460	1.44	11,861	0.21	0.34	2,000	308	OEHHA Acute REL	0.00110
HYDROGEN SULFIDE	7783-06-4	15,460	1.35	11,861	0.20	0.36	510	70	ATSDR Acute MRL	0.00515
ISOPRENE	78-79-5	15,460	2.37	11,861	0.49	0.72	NR	1,400	TCEQ Short-Term AMCV Health	0.00052
METHANOL	67-56-1	15,460	83.88	11,861	3.33	4.32	530,000	21,366	OEHHA Acute REL	0.00020
METHYLCYCLOHEXANE	108-87-2	15,460	1.84	11,861	0.04	0.09	NR	4,000	TCEQ Short-Term AMCV Health	0.00002
NONANE	111-84-2	15,460	1.85	11,861	0.02	0.07	NR	3,000	TCEQ Short-Term AMCV Health	0.00002
OCTANES*	111-65-9	15,460	1.84	11,861	0.03	0.08	NR	4,100	TCEQ Short-Term AMCV Health	0.00002
PENTANES*	109-66-0	15,460	2.93	11,861	1.06	1.10	NR	68,000	TCEQ Short-Term AMCV Health	0.00002
PROPYLENE	115-07-1	15,460	4.41	11,861	0.22	0.40	NR	NA	NA	NC
STYRENE	100-42-5	15,460	1.59	11,861	0.06	0.17	20,000	5,000	ATSDR Acute MRL	0.00003
TETRACHLOROETHYLENE	127-18-4	15,460	1.53	11,861	0.01	0.03	35,000	6	ATSDR Acute MRL	0.00532
TOLUENE	108-88-3	15,460	23.09	11,861	0.69	0.99	67,000	2,000	ATSDR Acute MRL	0.00049
TRIMETHYLBENZENES*	622-96-8	15,460	10.61	11,861	0.14	0.24	50,000	250	TCEQ Short-Term AMCV Health	0.00098
UNDECANE	1120-21-4	15,460	1.84	11,861	0.04	0.08	NR	550	TCEQ Short-Term AMCV Health	0.00015
XYLENES*	1330-20-7	15,460	46.71	11,861	0.53	0.89	130,000	2,000	ATSDR Acute MRL	0.00044
									Hazard Index	0.06759

NR= According to EPA, AEGL is "not recommended due to insufficient data" NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment

Elyria-Swansea Neighborhood | June 5, 2022

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	8,160	0.32	5,058	0.04	0.05	670,000	298	OEHHA Acute REL	0.00017
ACETYLENE	74-86-2	8,160	0.82	5,058	0.13	0.17	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	8,160	4.94	5,058	0.32	0.48	52,000	9	ATSDR Acute MRL	0.05380
BUTANES*	75-28-5	8,160	9.93	5,058	3.89	4.83	NR	33,000	TCEQ Short-Term AMCV Health	0.00015
BUTENES*	590-18-1	8,160	19.25	5,058	2.24	2.91	NR	15,000	TCEQ Short-Term AMCV Health	0.00019
CARBON DISULFIDE	75-15-0	8,160	0.09	5,058	0.02	0.02	13,000	1,990	OEHHA Acute REL	0.00001
CYCLOPENTANES*	287-92-3	8,160	17.77	5,058	1.81	2.60	NR	5,900	TCEQ Short-Term AMCV Health	0.00044
DECANE	124-18-5	8,160	0.17	5,058	0.05	0.08	NR	1,000	TCEQ Short-Term AMCV Health	0.00008
DIETHYLBENZENES*	141-93-5	8,160	0.16	5,058	0.07	0.08	NR	450	TCEQ Short-Term AMCV Health	0.00019
DIMETHYLCYCLOHEXANES*	638-04-0	8,160	0.11	5,058	0.04	0.05	NR	4,000	CDPHE	0.00001
DODECANE	112-40-3	8,160	0.02	5,058	0.00	0.00	NR	1,720	CDPHE	0.00000
ETHYLENE	74-85-1	8,160	7.08	5,058	6.28	6.29	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	8,160	0.25	5,058	0.08	0.10	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	8,160	0.27	5,058	0.05	0.06	NR	5,400	TCEQ Short-Term AMCV Health	0.00001
HEXENES*	592-41-6	8,160	9.53	5,058	1.83	2.47	NR	500	TCEQ Short-Term AMCV Health	0.00493
HYDROGEN CYANIDE	74-90-8	8,160	0.59	5,058	0.20	0.24	2,000	308	OEHHA Acute REL	0.00079
HYDROGEN SULFIDE	7783-06-4	8,160	14.13	5,058	0.19	0.24	510	70	ATSDR Acute MRL	0.00340
ISOPRENE	78-79-5	8,160	0.85	5,058	0.34	0.44	NR	1,400	TCEQ Short-Term AMCV Health	0.00031
METHANOL	67-56-1	8,160	45.94	5,058	7.57	8.09	530,000	21,366	OEHHA Acute REL	0.00038
METHYLCYCLOHEXANE	108-87-2	8,160	0.37	5,058	0.07	0.09	NR	4,000	TCEQ Short-Term AMCV Health	0.00002
NONANE	111-84-2	8,160	0.11	5,058	0.03	0.04	NR	3,000	TCEQ Short-Term AMCV Health	0.00001
OCTANES*	111-65-9	8,160	0.18	5,058	0.05	0.06	NR	4,100	TCEQ Short-Term AMCV Health	0.00002
PENTANES*	109-66-0	8,160	0.04	5,058	0.00	0.00	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	8,160	4.10	5,058	0.42	0.58	NR	NA	NA	NC
STYRENE	100-42-5	8,160	0.33	5,058	0.09	0.11	20,000	5,000	ATSDR Acute MRL	0.00002
TETRACHLOROETHYLENE	127-18-4	8,160	0.19	5,058	0.04	0.06	35,000	6	ATSDR Acute MRL	0.00993
TOLUENE	108-88-3	8,160	9.94	5,058	0.41	0.71	67,000	2,000	ATSDR Acute MRL	0.00036
TRIMETHYLBENZENES*	622-96-8	8,160	3.26	5,058	0.24	0.35	50,000	250	TCEQ Short-Term AMCV Health	0.00141
UNDECANE	1120-21-4	8,160	0.15	5,058	0.07	0.08	NR	550	TCEQ Short-Term AMCV Health	0.00015
XYLENES*	1330-20-7	8,160	9.99	5,058	0.63	0.92	130,000	2,000	ATSDR Acute MRL	0.00046
									Hazard Index	0.07727

NR= According to EPA, AEGL is "not recommended due to insufficient data" NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment

Globeville Neighborhood | June 5, 2022

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	7,675	0.25	4,076	0.03	0.04	670,000	298	OEHHA Acute REL	0.00014
ACETYLENE	74-86-2	7,675	1.03	4,076	0.09	0.15	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	7,675	9.00	4,076	0.47	0.63	52,000	9	ATSDR Acute MRL	0.06998
BUTANES*	75-28-5	7,675	8.98	4,076	4.33	4.89	NR	33,000	TCEQ Short-Term AMCV Health	0.00015
BUTENES*	590-18-1	7,675	32.51	4,076	1.72	1.79	NR	15,000	TCEQ Short-Term AMCV Health	0.00012
CARBON DISULFIDE	75-15-0	7,675	0.10	4,076	0.01	0.01	13,000	1,990	OEHHA Acute REL	0.00001
CYCLOPENTANES*	287-92-3	7,675	34.58	4,076	1.35	1.44	NR	5,900	TCEQ Short-Term AMCV Health	0.00024
DECANE	124-18-5	7,675	0.22	4,076	0.11	0.12	NR	1,000	TCEQ Short-Term AMCV Health	0.00012
DIETHYLBENZENES*	141-93-5	7,675	0.18	4,076	0.07	0.08	NR	450	TCEQ Short-Term AMCV Health	0.00017
DIMETHYLCYCLOHEXANES*	638-04-0	7,675	0.38	4,076	0.03	0.03	NR	4,000	CDPHE	0.00001
DODECANE	112-40-3	7,675	0.03	4,076	0.00	0.00	NR	1,720	CDPHE	0.00000
ETHYLENE	74-85-1	7,675	7.12	4,076	6.25	6.27	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	7,675	0.34	4,076	0.09	0.10	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	7,675	0.55	4,076	0.07	0.09	NR	5,400	TCEQ Short-Term AMCV Health	0.00002
HEXENES*	592-41-6	7,675	24.90	4,076	1.09	1.15	NR	500	TCEQ Short-Term AMCV Health	0.00230
HYDROGEN CYANIDE	74-90-8	7,675	1.87	4,076	0.10	0.17	2,000	308	OEHHA Acute REL	0.00054
HYDROGEN SULFIDE	7783-06-4	7,675	1.06	4,076	0.15	0.26	510	70	ATSDR Acute MRL	0.00370
ISOPRENE	78-79-5	7,675	1.60	4,076	0.37	0.44	NR	1,400	TCEQ Short-Term AMCV Health	0.00031
METHANOL	67-56-1	7,675	34.33	4,076	7.74	8.05	530,000	21,366	OEHHA Acute REL	0.00038
METHYLCYCLOHEXANE	108-87-2	7,675	0.30	4,076	0.06	0.06	NR	4,000	TCEQ Short-Term AMCV Health	0.00001
NONANE	111-84-2	7,675	0.14	4,076	0.04	0.04	NR	3,000	TCEQ Short-Term AMCV Health	0.00001
OCTANES*	111-65-9	7,675	0.17	4,076	0.05	0.06	NR	4,100	TCEQ Short-Term AMCV Health	0.00001
PENTANES*	109-66-0	7,675	0.47	4,076	0.01	0.01	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	7,675	7.18	4,076	0.55	0.61	NR	NA	NA	NC
STYRENE	100-42-5	7,675	0.24	4,076	0.00	0.01	20,000	5,000	ATSDR Acute MRL	0.00000
TETRACHLOROETHYLENE	127-18-4	7,675	0.10	4,076	0.00	0.01	35,000	6	ATSDR Acute MRL	0.00126
TOLUENE	108-88-3	7,675	32.79	4,076	0.70	0.84	67,000	2,000	ATSDR Acute MRL	0.00042
TRIMETHYLBENZENES*	622-96-8	7,675	4.68	4,076	0.04	0.05	50,000	250	TCEQ Short-Term AMCV Health	0.00021
UNDECANE	1120-21-4	7,675	0.13	4,076	0.06	0.06	NR	550	TCEQ Short-Term AMCV Health	0.00010
XYLENES*	1330-20-7	7,675	31.50	4,076	0.66	0.86	130,000	2,000	ATSDR Acute MRL	0.00043
									Hazard Index	0.08068

NR= According to EPA, AEGL is "not recommended due to insufficient data" NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment

Pioneer Park Neighborhood | June 1, 2022

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	16,890	0.24	13,584	0.03	0.04	670,000	298	OEHHA Acute REL	0.00012
ACETYLENE	74-86-2	16,890	0.93	13,584	0.07	0.17	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	16,890	4.88	13,584	0.18	0.22	52,000	9	ATSDR Acute MRL	0.02451
BUTANES*	75-28-5	16,890	20.82	13,584	1.74	2.03	NR	33,000	TCEQ Short-Term AMCV Health	0.00006
BUTENES*	590-18-1	16,890	16.65	13,584	1.08	1.37	NR	15,000	TCEQ Short-Term AMCV Health	0.00009
CARBON DISULFIDE	75-15-0	16,890	0.05	13,584	0.00	0.00	13,000	1,990	OEHHA Acute REL	0.00000
CYCLOPENTANES*	287-92-3	16,891	20.97	13,585	0.91	1.41	NR	5,900	TCEQ Short-Term AMCV Health	0.00024
DECANE	124-18-5	16,890	0.44	13,584	0.27	0.32	NR	1,000	TCEQ Short-Term AMCV Health	0.00032
DIETHYLBENZENES*	141-93-5	16,890	0.12	13,584	0.05	0.06	NR	450	TCEQ Short-Term AMCV Health	0.00014
DIMETHYLCYCLOHEXANES*	638-04-0	16,890	0.06	13,584	0.00	0.01	NR	4,000	CDPHE	0.00000
DODECANE	112-40-3	16,890	0.02	13,584	0.00	0.00	NR	1,720	CDPHE	0.00000
ETHYLENE	74-85-1	16,890	5.68	13,584	4.77	4.85	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	16,890	0.44	13,584	0.05	0.06	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	16,890	0.71	13,584	0.03	0.04	NR	5,400	TCEQ Short-Term AMCV Health	0.00001
HEXENES*	592-41-6	16,890	9.00	13,584	0.35	0.53	NR	500	TCEQ Short-Term AMCV Health	0.00106
HYDROGEN CYANIDE	74-90-8	16,890	0.83	13,584	0.15	0.36	2,000	308	OEHHA Acute REL	0.00116
HYDROGEN SULFIDE	7783-06-4	16,890	1.04	13,584	0.15	0.34	510	70	ATSDR Acute MRL	0.00484
ISOPRENE	78-79-5	16,890	1.07	13,584	0.26	0.36	NR	1,400	TCEQ Short-Term AMCV Health	0.00026
METHANOL	67-56-1	16,890	31.79	13,584	1.80	4.04	530,000	21,366	OEHHA Acute REL	0.00019
METHYLCYCLOHEXANE	108-87-2	16,890	0.12	13,584	0.01	0.02	NR	4,000	TCEQ Short-Term AMCV Health	0.00000
NONANE	111-84-2	16,890	0.07	13,584	0.01	0.01	NR	3,000	TCEQ Short-Term AMCV Health	0.00000
OCTANES*	111-65-9	16,890	0.29	13,584	0.03	0.04	NR	4,100	TCEQ Short-Term AMCV Health	0.00001
PENTANES*	109-66-0	16,890	0.40	13,584	0.07	0.07	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	16,890	4.67	13,584	0.10	0.17	NR	NA	NA	NC
STYRENE	100-42-5	16,890	2.61	13,584	0.05	0.10	20,000	5,000	ATSDR Acute MRL	0.00002
TETRACHLOROETHYLENE	127-18-4	16,890	0.22	13,584	0.02	0.09	35,000	6	ATSDR Acute MRL	0.01515
TOLUENE	108-88-3	16,890	11.65	13,584	0.27	0.37	67,000	2,000	ATSDR Acute MRL	0.00018
TRIMETHYLBENZENES*	622-96-8	16,890	2.22	13,584	0.09	0.14	50,000	250	TCEQ Short-Term AMCV Health	0.00055
UNDECANE	1120-21-4	16,890	0.11	13,584	0.04	0.05	NR	550	TCEQ Short-Term AMCV Health	0.00010
XYLENES*	1330-20-7	16,890	12.88	13,584	0.46	0.90	130,000	2,000	ATSDR Acute MRL	0.00045
									Hazard Index	0.04949

NR= According to EPA, AEGL is "not recommended due to insufficient data" NA= Not Available NC= Not Calculated

Mobile Laboratory Sampling Data Summary and Risk Assessment

Western Hills Neighborhood | June 4, 2022

Analyte	Cas No	Count of 1-second Concentrations (#)	Maximum 1-second Concentration (ppbv)	Count of 1-hr Rolling Averages Derived (#)	Average 1-hr Rolling Average (ppbv)	Maximum 1-hr Rolling Average (ppbv)	AEGL 1 60-min Value	Health Reference Level (ppbv)	Screening Value Source	Hazard Quotient
1,3 BUTADIENE	106-99-0	15,193	0.29	11,594	0.04	0.05	670,000	298	OEHHA Acute REL	0.00018
ACETYLENE	74-86-2	15,193	1.09	11,594	0.18	0.31	NR	25,000	TCEQ Short-Term AMCV Health	0.00001
BENZENE	71-43-2	15,193	4.48	11,594	0.32	0.40	52,000	9	ATSDR Acute MRL	0.04496
BUTANES*	75-28-5	15,193	184.19	11,594	4.07	4.91	NR	33,000	TCEQ Short-Term AMCV Health	0.00015
BUTENES*	590-18-1	15,193	18.76	11,594	2.79	3.23	NR	15,000	TCEQ Short-Term AMCV Health	0.00022
CARBON DISULFIDE	75-15-0	15,193	0.10	11,594	0.01	0.02	13,000	1,990	OEHHA Acute REL	0.00001
CYCLOPENTANES*	287-92-3	15,193	19.43	11,594	1.51	2.07	NR	5,900	TCEQ Short-Term AMCV Health	0.00035
DECANE	124-18-5	15,193	0.20	11,594	0.09	0.11	NR	1,000	TCEQ Short-Term AMCV Health	0.00011
DIETHYLBENZENES*	141-93-5	15,193	0.26	11,594	0.07	0.08	NR	450	TCEQ Short-Term AMCV Health	0.00017
DIMETHYLCYCLOHEXANES*	638-04-0	15,193	0.19	11,594	0.02	0.03	NR	4,000	CDPHE	0.00001
DODECANE	112-40-3	15,193	0.01	11,594	0.00	0.00	NR	1,720	CDPHE	0.00000
ETHYLENE	74-85-1	15,193	4.73	11,594	4.16	4.18	NR	500,000	TCEQ Short-Term AMCV Health	0.00001
HEPTANES*	142-82-5	15,193	0.29	11,594	0.07	0.09	NR	8,300	TCEQ Short-Term AMCV Health	0.00001
HEXANES*	110-54-3	15,193	0.47	11,594	0.03	0.05	NR	5,400	TCEQ Short-Term AMCV Health	0.00001
HEXENES*	592-41-6	15,193	15.39	11,594	2.12	2.48	NR	500	TCEQ Short-Term AMCV Health	0.00495
HYDROGEN CYANIDE	74-90-8	15,193	1.23	11,594	0.14	0.19	2,000	308	OEHHA Acute REL	0.00061
HYDROGEN SULFIDE	7783-06-4	15,193	0.81	11,594	0.11	0.21	510	70	ATSDR Acute MRL	0.00296
ISOPRENE	78-79-5	15,193	1.28	11,594	0.28	0.37	NR	1,400	TCEQ Short-Term AMCV Health	0.00027
METHANOL	67-56-1	15,193	23.36	11,594	5.31	5.76	530,000	21,366	OEHHA Acute REL	0.00027
METHYLCYCLOHEXANE	108-87-2	15,193	1.24	11,594	0.06	0.07	NR	4,000	TCEQ Short-Term AMCV Health	0.00002
NONANE	111-84-2	15,193	0.11	11,594	0.02	0.03	NR	3,000	TCEQ Short-Term AMCV Health	0.00001
OCTANES*	111-65-9	15,193	0.13	11,594	0.03	0.04	NR	4,100	TCEQ Short-Term AMCV Health	0.00001
PENTANES*	109-66-0	15,193	0.16	11,594	0.00	0.01	NR	68,000	TCEQ Short-Term AMCV Health	0.00000
PROPYLENE	115-07-1	15,193	2.34	11,594	0.27	0.41	NR	NA	NA	NC
STYRENE	100-42-5	15,193	0.47	11,594	0.20	0.24	20,000	5,000	ATSDR Acute MRL	0.00005
TETRACHLOROETHYLENE	127-18-4	15,193	0.15	11,594	0.02	0.05	35,000	6	ATSDR Acute MRL	0.00788
TOLUENE	108-88-3	15,193	22.27	11,594	1.02	1.60	67,000	2,000	ATSDR Acute MRL	0.00080
TRIMETHYLBENZENES*	622-96-8	15,193	9.11	11,594	0.28	0.38	50,000	250	TCEQ Short-Term AMCV Health	0.00150
UNDECANE	1120-21-4	15,193	0.13	11,594	0.05	0.06	NR	550	TCEQ Short-Term AMCV Health	0.00011
XYLENES*	1330-20-7	15,193	34.91	11,594	0.82	1.15	130,000	2,000	ATSDR Acute MRL	0.00057
									Hazard Index	0.06620

NR= According to EPA, AEGL is "not recommended due to insufficient data" NA= Not Available NC= Not Calculated

APPENDIX D CALIBRATION AND QA/QC DATA

		Initial Inst	rument Calibration \	/erification		
		Calibration	Response	Difference		
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
		-				
5/31/2022	12:29	Benzene	250	243	-2.8	Pass
		Toluene	250	258	3.2	Pass
		Xylenes	500	490	-2.0	Pass
	12:36	Benzene	50	53.6	7.2	Pass
	-	Toluene	50	52.9	5.8	Pass
		Xylenes	100	112	12.0	Pass
	12:43	Benzene	20	20.5	2.5	Pass
		Toluene	20	21.4	7.0	Pass
		Xylenes	40	41.9	4.8	Pass
	12:49	Benzene	5	5.04	0.8	Pass
		Toluene	5	5.13	2.6	Pass
		Xylenes	10	11.3	13.0	Pass
		Entration of the second s	100	100		
	13:23	Ethylene	100	105	5.0	Pass
		Propylene	100	102	2.0	Pass
		3-Butene	100	97.2	-2.8	Pass
		1-Pentene	100	103	3.0	Pass
		1-Hexene	100	99.8	-0.2	Pass
		1,3-Butadiene	100	95.6	-4,4	Pass
	22.22	Ext. Long		40 F		
	13:27	Ethylene	50	49.1	-1.8	Pass
		Propylene	50	52.1	4.2	Pass
		1-Butene	50	49.9	-0.2	Pass
		1-Pentene	50	54.4	8.8	Plass
		1-Hexene	50	50.7	1.4	Pass
		1,3-Butadiene	50	48.3	-3.4	Page
	13:35	Ethylene	10	11.8	18.0	Pass
		Propylene	10	11	10.0	Pass
		3-Butene	30	10.9	9.0	Pass
		1-Pentene	30	10.8	8.0	Pass
		1-Hexene	10	10.5	5.0	Page
		1,3-Butadiene	10	9.9	-1	Pass
	14:17	HEN	50	51.1	2.2	Pass
	14:20	HCN	25	25.5	2.0	Pass
	14:23	HEN	30	9.8	-2.0	Pass
	14:41	H ₂ S	500	487	-2.6	Pass
	14:46	HJS	125	122	-2.4	Page
	14:48	HJS	25	25.5	2.0	Pass
	14:51	HuS	30	10.5	5.0	Pass
	14:54	H ₂ S	5	5.18	3.6	Pass
	15:19	Propane	650	642	-1.2	Pass
		Butane	650	668	2.8	Pass
		Pentane	650	638	-1.8	Pass
		Hexane	650	664	2.2	Pass
		Heptane	650	674	3.7	Pass
					4.7	
	15:24	Propane	300	289	-3.7	Pass
		Butane	300	314	4.7	Pass
		Pentane	300	288	-4.0	Pass
		Hexane	300	290	-0.0	Pass
		Heptane	300	334	11.3	Pass
		- and		1.04		
	15:27	Propane	100	109	9.0	Pass
	10.00	Butane	100		3.0	
				103		Pass
		Pentane	100	97	-3.0	Pass
		Hexane	100	109	9.0	Pass
		Heptane	100	104	4.0	Pass
		-				-
	15:30	Propane	25	28.6	14.4	Pass
		Butane	25	28.8	15.2	Pass
			25	23.7	-5.2	Pass
		Pentane				
		Pentane Hexane	25	28.1	12.4	Pass
					12.4 1.2	Pass Pass
		Hexane	25 25	28.1 25.3	1.2	
	16:46	Hexane	25	28.1		

Instrument Calibration Check										
		Calibration	Calibration Value	Response	Difference					
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail				
6/1/2022	8:59	Ethylene	50	51.4	2.8	Pass				
		Propylene	50	49.7	-0.6	Pass				
		1-Butene	50	50.4	0.8	Pass				
		1-Pentene	50	51.7	3.4	Pass				
		1-Hexene	50	50.5	1.0	Pass				
		1,3-Butadiene	50	48.9	-2.2	Pass				
	8:31	Benzene	100	109	9.0	Pass				
		Toluene	100	108	8.0	Pass				
		Xylenes	200	212	6.0	Pass				
	8:33	Benzene	10	9.6	-4.0	Pass				
		Toluene	10	9.54	-4.6	Pass				
		Xylenes	20	19.8	-1.0	Pass				
	8:38	HCN	50	48.1	-3.8	Pass				
	8:40	HCN	25	25.9	3.6	Pass				
	8:53	H ₂ S	100	89.8	-10.2	Pass				
	8:55	H ₂ S	20	19.1	-4.5	Pass				
	9:02	Propane	150	136	-9.3	Pass				
		Butane	150	149	-0.7	Pass				
		Pentane	150	142	-5.3	Pass				
		Hexane	150	144	-4.0	Pass				
		Heptane	150	149	-0.7	Pass				
	16:18	HCN	25	25.9	3.6	Pass				
	16:27	H2S	20	19.3	-3.5	Pass				
	16:29	Propane	150	148	-1.3	Pass				
		Butane	150	146	-2.7	Pass				
		Pentane	150	142	-5.3	Pass				
		Hexane	150	145	-3.3	Pass				
		Heptane	150	156	4.0	Pass				
	16:37	Benzene	100	102	2.0	Pass				
		Toluene	100	102	2.0	Pass				
		Xylenes	200	194	-3.0	Pass				
	16:33	Ethylene	50	54.5	9.0	Pass				
		Propylene	50	51.4	2.8	Pass				
		1-Butene	50	47	-6.0	Pass				
		1-Pentene	50	46.8	-6.4	Pass				
		1-Hexene	50	43.7	-12.6	Pass				

			Instrument Calibration			
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
5/2/2022	12:03	Ethylene	50	54.7	9.4	Pass
		Propylene	50	51.3	2.6	Pass
		1-Butene	50	51.6	3.2	Pass
		1-Pentene	50	55	10.0	Pass
		1-Hexene	50	47.8	-4.4	Pass
		1,3-Butadiene	50	50.5	1.0	Pass
	12:07	Benzene	100	105	5.0	Pass
		Toluene	100	104	4.0	Pass
		Xylenes	200	196	-2.0	Pass
	12:15	Benzene	20	19.8	-1.0	Pass
		Toluene	20	19.4	-3.0	Pass
		Xylenes	40	38.4	-4.0	Pass
	8:18	HCN	25	24.7	-1.2	Pass
	8:25	H ₂ S	125	118	-5.6	Pass
	8:26	H2S	20	22	10.0	Pass
	12:22	Propane	150	176	17.3	Pass
		Butane	150	145	-3.3	Pass
		Pentane	150	140	-6.7	Pass
		Hexane	150	157	4.7	Pass
		Heptane	150	154	2.7	Pass
	16:57	HCN	25	23.6	-5.6	Pass
	17:05	H25	50	46.1	-7.8	Pass
	17:12	Propane	150		-100.0	Fail
		Butane	150	137	-8.7	Pass
		Pentane	150	139	-7.3	Pass
		Hexane	150	137	-8.7	Pass
		Heptane	150	141	-6.0	Pass
	17:07	Benzene	100	113	13.0	Pass
	17:07	Benzene Toluene	100 100	113 106	13.0 6.0	Pass Pass
	17:07					
	17:07	Toluene	100	106 221 44.7	6.0	Pass
		Toluene Xylenes	100 200	106 221	6.0 10.5	Pass Pass
		Toluene Xylenes Ethylene	100 200 50	106 221 44.7	6.0 10.5 -10.6	Pass Pass Pass
		Toluene Xylenes Ethylene Propylene	100 200 50 50	106 221 44.7 47.7	6.0 10.5 -10.6 -4.6	Pass Pass Pass Pass
		Toluene Xylenes Ethylene Propylene 1-Butene	100 200 50 50 50	106 221 44.7 47.7 45.3	6.0 10.5 -10.6 -4.6 -9.4	Pass Pass Pass Pass Pass

			Instrument Calibration			
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fai
5/3/2022	8:34	Ethylene	50	49.7	-0.6	Pass
		Propylene	50	51.3	2.6	Pass
		1-Butene	50	48.4	-3.2	Pass
		1-Pentene	50	50.2	0.4	Pass
		1-Hexene	50	54.1	8.2	Pass
		1,3-Butadiene	50	48.6	-2.8	Pass
	8:39	Benzene	100	110	10.0	Pass
		Toluene	100	108	8.0	Pass
		Xylenes	200	229	14.5	Pass
	8:47	Benzene	10	10.2	2.0	Pass
		Toluene	10	9.93	-0.7	Pass
		Xylenes	20	18.9	-5.5	Pass
	8:54	HCN	25	25.6	2.4	Pass
	9:03	H ₂ S	100	96.8	-3.2	Pass
			20	21.3	6.5	Pass
	9:14	Propane	150	146	-2.7	Pass
		Butane	150	151	0.7	Pass
		Pentane	150	138	-8.0	Pass
		Hexane	150	158	5.3	Pass
		Heptane	150	163	8.7	Pass
	16:49	HCN	25	23.6	-5.6	Pass
	17:03	H2S	50	43.5	-13.0	Pass
	17:25	Propane	150		-100.0	Fail
		Butane	150	140	-6.7	Pass
		Pentane	150	138	-8.0	Pass
		Hexane	150	142	-5.3	Pass
		Heptane	150	141	-6.0	Pass
	17:22	Benzene	100	105	6.0	Pass
		Toluene	100	103	3.0	Pass
		Xylenes	200	217	8.5	Pass
	17:06	Ethylene	50	40.5	-19.0	Pass
		Propylene	50	48.3	-3.4	Pass
		1-Butene	50	47.4	-5.2	Pass
		1-Pentene	50	51.7	3.4	Pass
			50	43	-14.0	Pass
		1-Hexene	50	43	-14.0	1 433

			Instrument Calibration			
		Calibration	Calibration Value	Response	Difference	
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
5/4/2022	8:25	Ethylene	50	57.1	14.2	Pass
		Propylene	50	49.6	-0.8	Pass
		1-Butene	50	49.2	-1.6	Pass
		1-Pentene	50	53.3	6.6	Pass
		1-Hexene	50	51.1	2.2	Pass
		1,3-Butadiene	50	47.8	-4.4	Pass
	8:31	Benzene	100	99	-1.0	Pass
		Toluene	100	105	5.0	Pass
		Xylenes	200	219	9.5	Pass
	8:36	Benzene	20	19.6	-2.0	Pass
		Toluene	20	19.4	-3.0	Pass
		Xylenes	40	38.5	-3.8	Pass
	8:22	HCN	25	24.5	-2.0	Pass
	8:15	H ₂ S	100	97.6	-2.4	Pass
	8:17		20	20.6	3.0	Pass
	8:40	Propane	150	155	3.3	Pass
		Butane	150	148	-1.3	Pass
		Pentane	150	148	-1.3	Pass
		Hexane	150	144	-4.0	Pass
		Heptane	150	139	-7.3	Pass
	14:24	HCN	. 25	24.3	-2.8	Pass
	14:24	HCN	25	29.3	-2.8	Pass
	14:31	H25	50	46.8	-6.4	Pass
	14:37	Propane	150		-100.0	Fail
		Butane	150	142	-5.3	Pass
		Pentane	150	141	-6.0	Pass
		Hexane	150	146	-2.7	Pass
		Heptane	150	148	-1.3	Pass
	14:35	Benzene	100	108	8.0	Pass
		Toluene	100	102	2.0	Pass
		Xylenes	200	221	10.5	Pass
	14:33	Ethylene	50	46.2	-7.6	Pass
		Propylene	50	51.7	3.4	Pass
		1-Butene	50	51	2.0	Pass
		1-Pentene	50	48.2	-3.6	Pass
		1-Hexene	50	47.9	-4.2	Pass
		1,3-Butadiene	50	48.1	-3.8	Pass

		53555m329W	Instrument Calibration		5232235777150	
		Calibration	Calibration Value	Response	Difference	11 A.M.
Date	Time	Gas Component	(ppb v)	(ppb v)	(% of value)	Pass/Fail
5/5/2022	8:03	Ethylene	50	50.9	1.8	Pass
		Propylene	50	51.3	2.6	Pass
		1-Butene	50	47.4	-5.2	Pass
		1-Pentene	50	50.8	1.6	Pass
		1-Hexene	50	52.7	5.4	Pass
		1,3-Butadiene	50	48.5	-3.0	Pass
	7:57	Benzene	100	104	4.0	Pass
		Toluene	100	104	4.0	Pass
		Xylenes	200	213	6.5	Pass
	8:01	Benzene	20	18.9	-5.5	Pass
		Toluene	20	20.7	3.5	Pass
		Xylenes	40	39.2	-2.0	Pass
	8:18	HCN	25	26.4	5.6	Pass
	7:50	H ₂ S	100	102	2.0	Pass
	8:12		20	19.9	-0.5	Pass
	8:23	Propane	150	148	-1.3	Pass
		Butane	150	143	-4.7	Pass
		Pentane	150	144	-4.0	Pass
		Hexane	150	152	1.3	Pass
		Heptane	150	149	-0.7	Pass
			+			
	14:52	HCN	25	24.5	-2.0	Pass
	14:48	H2S	50	50.6	1.2	Pass
	14:55	Propane	150	157	4.7	Pass
		Butane	150	157	4.7	Pass
		Pentane	150	138	-8.0	Pass
		Hexane	150	142	-5.3	Pass
		Heptane	150	143	-4.7	Pass
	14:45	Benzene	100	102	2.0	Pass
		Toluene	100	104	4.0	Pass
		Xylenes	200	211	5.5	Pass
	14:42	Ethylene	50	46.6	-6.8	Pass
		Propylene	50	51.8	3.6	Pass
		1-Butene	50	49.3	-1.4	Pass
		1-Pentene	50	48.9	-2.2	Pass
		1-Hexene	50	48.5	-3.0	Pass

PTR Operating Parameters

Suncor Screen Shots

2nd Quarter 2022

Initial Calibration Checks

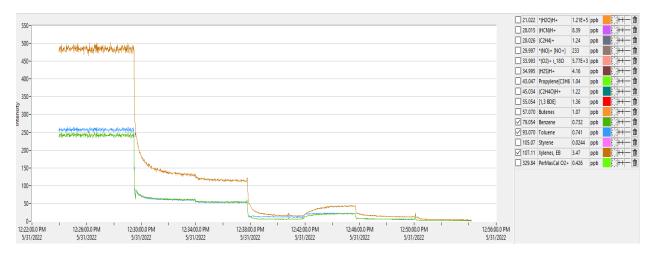
💕 🔒 🗟		⊙ ⊘			
Setting	Odor	~ <i>></i>			
Primary Ion	H3O+	 P 			
Transmission	DC	 P 			
	Man/Ctrl	Ctrl			
PC	352.6 💂	352.58 mbar			
p Drift	2.30 🌲	2.30 mbar			
TofLens	5.33E-5 mbar				
TOF		9.26E-7 mbar			
E/N		120 Td			
Temps	80.00 °C	80.10 °C			
SrcValve	50.0 🌲				
H2O	6.0 💂	6.00 sccm			
02	0.0	0.00 sccm			
NO	0.0	0.00 sccm			
lhc	4	4.0 mA			
	On/Off	On			
FCinlet	60.0 🚔	59.93 sccm			
U FU	°C ⊡≯	D*			
Us	150 🚔	145.0 V			
Uso	80 🚍	78.6 V			
Udrift	525 💂	526.1 V			

Production Settings

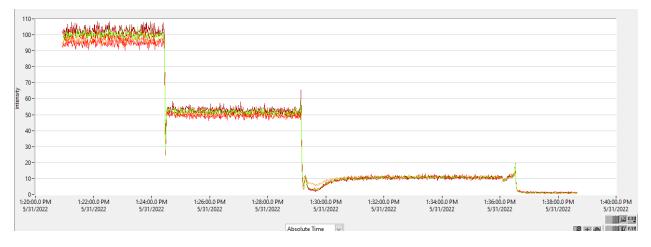
TPS 2-9-2	2 Ionicon	Tune of 1	- '	*Changed*
📂 ┢ 🖬	1		MC	2
Lens 1	12.0 🜲	13.0 V		All on 🗹
Lens 2	30.0 🜲	30.0 V		Lenses 🗸
Lens 3	20.0 🜲	21.0 V		
Lens 4	76.0 🜲	76.0 V		
Lens 5	70.0 🜲	70.0 V		
Lens 6	60.0 ≑	60.0 V		
Lens 7	17.0 🚔	18.0 V		
Push L	16.5 🜲	16.0 V	\square	3 mA
Push H	790.0 🜲	790.0 V	\square	2 mA
Pull L	86.0 🜲	86.0 V	\square	3 mA
Pull H	700.0 🖨	700.0 V	\square	3 mA
Grid	2400.0 🜲	2283.0 V		1 μA
Cage	5020.0 韋	4766 V	\square	99 µA
Refl. Grid	665.0 韋	632.0 V	\checkmark	75 µA
Refl. Back	900.0 🜩	855.0 V	\square	167 µA
MCP F	5400 🜲	5134 V	\checkmark	17 µA
MCP B	2570 🜲	2452 V	\checkmark	225 µA

TOF Settings

Acquisition					A	CQ act	tive
🞽 🖬 🗟							
Single Spec Ti	me (ms)	1000		×			
Extraction t	time (µs)	5.0		*	1	372.4 a	mu
max Flight	time(µs)	32.0		*		31.25	κΗz
Data Save Se	ettings						
🗹 Spec	\checkmark	Trac	e			Raw	
Time Duratio	n					\sim	
02:00:00 🚔 S	Single File	e Dura	ation	1			
12 🛓	Number o	of File	s To	Sto	re		
C:\lonicon\d	ata						
Add File C	ount Ext	ensio	n				
New ACQ	for new f	file					
<year>_<mo Data_<hour></hour></mo </year>		-		ond	>		
2022_05_31\D	ata_10_1	8_34_	part	_xx	X		
Mass Axis Cal	ibration						
	🖧 Cal			2 (50 s	ec	÷
Mass	TimeBin						
21.0220	16005		Û	^	a	1501	4.1
203.9400	161586		Û		b	-5282	9.2
330.8500	220266		Û	¥			

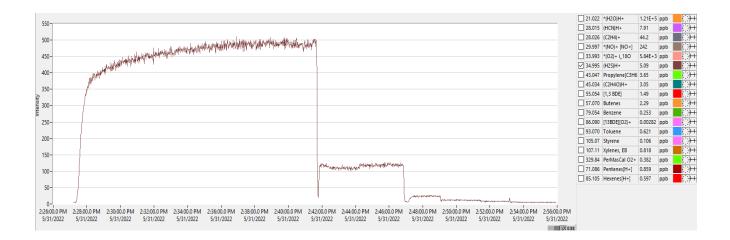

Acquisition Settings

🔞 н	_		×
F A L	ł		
Hex1			OP
OFF/ON	\checkmark		ON
Frequency	6.00	-	6.00Mhz
Amplitude	95.0	-	57.4V
Offset -	0.70	-	-0.67V
<			>


Hexapole Settings

Initial Calibration Checks

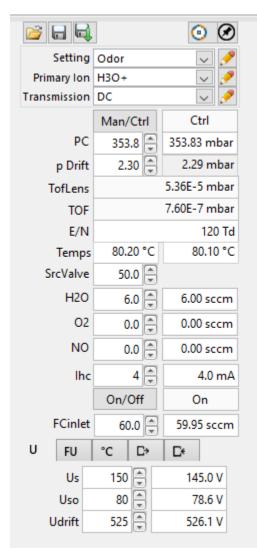
BTEX 250/50/20/5 ppb



Alkenes Calibration Check 100/50/10 ppb

HCN Calibration Check 50/25/10 ppb

H2S Calibration Check 500/125/25/10/5 ppb


000		21.022 *(H2O)H-	+ 53.0	ppb -
800-		28.015 (HCN)H+	11.5	ppb
750-		28.026 (C2H4)+	379	ppb
700 -	A free to assist at well at a free well as the second s	29.997 *(NO)+ [I	NO+] 1.19E	+3 ppb
650-		33.993 *(O2)+ i_	18O 1.08E	+5 ppb
600-	A GAMPA MARKA MARKA ANA ANA ANA ANA ANA ANA ANA ANA ANA A	34.995 (H2S)H+	91.7	ppb
	1 m 1 x 237 k 37 7 7 0. 7 8 8 3 7	43.047 Propylen	e[C3H6 39.7	ppb
550-	M ^{III} Y: 46b	55.054 [1,3 BDE]	5.14	ppb 🗾
500 - 450 -	XANA	57.070 Butenes	36.4	ppb
450-		79.054 Benzene	0.097	6 ppb
400-		86.090 [13BDE][0	0.236	ppb
350-	Charles and set of set	93.070 Toluene	0.095	4 ppb
	Water back and Bater back with a showed in the showed in t	105.07 Styrene	0.069	0 ppb
300 -		107.11 Xylenes,	EB 0.033	3 ppb 📕
250-	contraction for the design of	329.84 PerMasC	al O2+ 11.1	ppb
200-		44.090 Propane	[O2] 36.4	ppb
150-	Alter the second s	✓ 58.050 Butanes[02] 28.4	ppb
100-	Net-Office Building to March 1997	71.086 Pentenes	[H+] 23.5	ppb 🗾
50-	a metal fai mitrefactionel maleral references and an	72.080 Pentanes	(O2) 36.5	ppb
		85.105 Hexenes	[H+] 2.36	ppb
0-	a PM31730a PM31820a PM32910a PM32030a PM32030a PM322140a PM32230a PM322410a PM	86.090 Hexanes	O2] 26.3	ppb
	U PM3/15/00/ PM3/18/00/ PM3/18/00/ PM3/25/00/ PM3/200/ PM3/25/00/ PM3/200/ PM3/25/00/ PM3/200/ PM3/25/00/ PM3/200/ PM3/25/00/ PM3/25/00/ PM3/25/00/ PM3/25/00/ PM3/25/00/ PM3/25/00/ PM3/25/00/ PM3/200/ PM3/25/00/ PM3/200/ PM3/20	100.12 Heptane	s[O2] 37.9	ppb
	1.2 2.2			

Alkanes Calibration Check 650/300/100/25 ppb

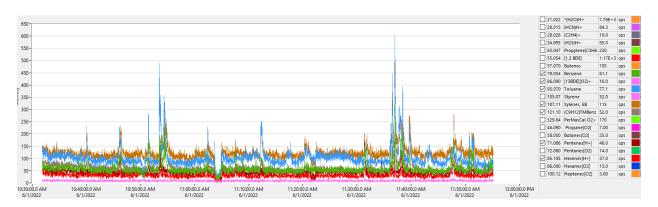
6-1-22

Daily Operating Parameters

Production Settings

TPS 2-9-2	2 Ionicon	Tune of 1	- '	*Changed*
📂 ┢ 层	1		M	2
Lens 1	12.0 🜲	12.0 V		All on 🗹
Lens 2	30.0 🜲	30.0 V		Lenses 🗸
Lens 3	20.0 🜲	21.0 V		
Lens 4	76.0 🜲	76.0 V		
Lens 5	70.0 🜲	70.0 V		
Lens 6	60.0 ≑	60.0 V		
Lens 7	17.0 韋	17.0 V		
Push L	16.5 🜲	16.0 V	\square	3 mA
Push H	790.0 🜲	790.0 V	\square	2 mA
Pull L	86.0 🜲	86.0 V	\checkmark	3 mA
Pull H	700.0 韋	700.0 V	\checkmark	3 mA
Grid	2400.0 🜲	2283.0 V	\checkmark	1 µA
Cage	5020.0 韋	4768 V	\checkmark	99 µA
Refl. Grid	665.0 🜲	631.0 V	\checkmark	75 µA
Refl. Back	900.0 🚖	855.0 V	\checkmark	167 µA
MCP F	5400 🜲	5134 V	\checkmark	17 µA
MCP B	2570 🚔	2444 V	\checkmark	222 µA

TOF Voltages



Hex Settings

Acquisition							Idle
📔 🖬 🗟							
Single Spec Ti	me (ms)	1000)	ł	-		
Extraction time (µs) 5.0 🔹 372.5						372.5	amu
max Flighttime(µs) 32.0 🖨 31.25 kH						kHz	
Data Save Se	ettings						
Spec 🗹		Trac	e			Raw	/
Time Duratio	n					\sim	
02:00:00 🖨 9	Single File	e Dur	atior	n			
12 😫 1	Number (of File	es To	St	ore		
C:\lonicon\d	ata					6	
Add File C			n				_
<year>_<mo Data_<hour></hour></mo </year>	_			ond	>		
2022_05_31\0)ata_10_1	8_34	part	:_X)	XX		
Mass Axis Ca	libration						
💕 🔒 ঝ	🖧 Cal		6	/	60 s	ec	-
Mass	TimeBin						
21.0220	15996		Û	^	a	150	13.6
203.9400	161572		Û		b	-528	36.4
330.8500	220250		Û	¥			

Acquisition Settings

Pioneer Park Sampling Example

6-2-22

Adams City Neighborhood

Daily Operating Parameters

6	8	,		0) 🖉	
	Setting	Odor		[~ 🍠	
Prin	nary lon	H3O+		[~ 🍠	
Trans	mission	DC		[~ 🥜	
		Man/	Ctrl	C	trl	
	PC	353	.2 🕀	353.15	5 mbar	
	p Drift	2.3	30 🕀	2.2	9 mbar	
1	TofLens			5.41E-	5 mbar	
	TOF			7.24E-	7 mbar	
	E/N				120 Td	
	Temps	79.9	90 °C	8	0.10 °C	
S	rcValve	50	.0 🚔			
	H2O	6	.0	6.00	0 sccm	
	02	0	.0 🛋	0.00 sccm		
	NO	0	0.0) sccm	
	lhc	4		4.0 mA		
		On/	Off	C)n	
	FCinlet	60	.0 🌲	60.0	1 sccm	
U	FU	°C	C≁	Ľ€		
	Us	150	A	14	5.0 V	
	Uso	80	A	7	8.6 V	
	Udrift	525	A	52	6.1 V	
_						
	🖲 Н	—			×	
E	t Fi	2				
H	lex1			OF		
	OFF/OI	V		0	I I	
		C 00	÷	6.00N	llar	
F	requend	y 6.00	•	0.0011	inz	
	requenc mplitud	-	• •	58.4V	_	
A		-				
A	mplitud ffset	le 95.0	ŧ	58.4V		

Production Settings and Hex Settings

TPS 2-9-2	2 Ionicon	Tune of 1	- 1	*Changed*
💕 ┢ 🖩	1		M	2
Lens 1	12.0 🜲	12.0 V		All on 🗹
Lens 2	30.0 🜲	30.0 V		Lenses 🗸
Lens 3	20.0 🜲	21.0 V		
Lens 4	76.0 🜲	76.0 V		
Lens 5	70.0 🜲	70.0 V		
Lens 6	60.0 🖨	60.0 V		
Lens 7	17.0 🚔	17.0 V		
Push L	16.5 🜲	16.0 V	\checkmark	3 mA
Push H	790.0 🚔	790.0 V	\checkmark	2 mA
Pull L	86.0 🖨	86.0 V	\checkmark	3 mA
Pull H	700.0 韋	700.0 V	\checkmark	3 mA
Grid	2400.0 🖨	2283.0 V	\checkmark	1 µA
Cage	5020.0 🖨	4768 V	\square	99 µA
Refl. Grid	665.0 🖨	631.0 V	\square	75 µA
Refl. Back	900.0 🜲	855.0 V	\checkmark	167 µA
MCP F	5400 🜲	5131 V	\checkmark	17 µA
MCP B	2570 🜲	2442 V	\checkmark	222 µA

TOF Settings

Acquisition							ldle
🞽 🖬 🗟							
Single Spec Ti	me (ms)	1000)	¢			
Extraction t	time (µs)	5.0		¢	3	72.5 a	mu
max Flight	time(µs)	32.0		-		31.25	kHz
Data Save Se	ettings						
Spec 🗹		Trac	e			Raw	
Time Duratio	n					\sim	
02:00:00 🖨 9	Single File	e Dur	atior	ı			
12 🗘	Number o	of File	es To	Sto	re		
C:\lonicon\d	lata					@	
Add File C			n				
<year>_<mo Data_<hour></hour></mo </year>	_			ond	>		
2022_05_31\[)ata_10_1	8_34	part	_XX	Х		
Mass Axis Ca	libration						
💕 🔒 ঝ	🖧 Cal		6	2	60 se	c	÷
Mass	TimeBin				_		
21.0220	15997		Û	^	а	1501	3.9
203.9400	161576		Û		b	-5283	6.2
330.8500	220255		Û	~			

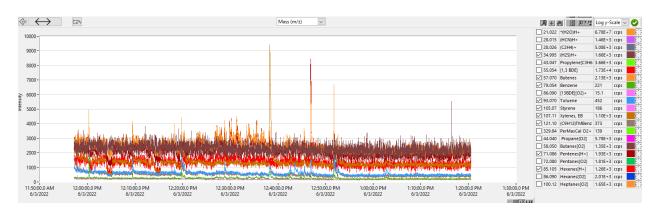
Acquisition Settings

6-3-2022 PTR Settings

Dupont Neighborhood

💕 日 🗟		⊙ ⊘
Setting	Odor	~ <i>9</i>
Primary Ion	H3O+	 Image: Image: Ima
Transmission	DC	~ 🥜
	Man/Ctrl	Ctrl
PC	353.0 🚔	353.02 mbar
p Drift	2.30 🚔	2.30 mbar
TofLens		5.92E-5 mbar
TOF		7.10E-7 mbar
E/N		120 Td
Temps	79.80 °C	80.20 °C
SrcValve	50.0 📮	
H2O	6.0	6.00 sccm
02	0.0	0.00 sccm
NO	0.0	0.00 sccm
lhc	4 🛋	4.0 mA
	On/Off	On
FCinlet	60.0 🚔	59.99 sccm
U FU	°C ⊡≯	E*
Us	150 🚍	145.0 V
Uso	80 🚔	78.6 V
Uso Udrift	80 💭 525 💭	78.6 V 526.1 V
		526.1 V
Udrift	525 💌	526.1 V
Udrift	525 💌	526.1 V
Udrift	525 *	526.1 V
Udrift	525 ×	526.1 V
Udrift	525 ♥ 	526.1 V × OP ON
Udrift	525 ×	526.1 V × OP ON 6.00Mhz

Production Settings and Hexapole Settings


i 🔁 📴			MC	2
Lens 1	12.0 🌲	13.0 V		All on 🗹
Lens 2	30.0 🜲	30.0 V		Lenses 🗸
Lens 3	20.0 🜲	21.0 V		
Lens 4	76.0 🜲	76.0 V		
Lens 5	70.0 🜲	70.0 V		
Lens 6	60.0 🜲	60.0 V		
Lens 7	17.0 韋	18.0 V		
Push L	16.5 🜲	16.0 V	\checkmark	3 mA
Push H	790.0 🜲	790.0 V	\square	2 mA
Pull L	86.0 🜲	86.0 V	\square	3 mA
Pull H	700.0 🖨	700.0 V	\checkmark	3 mA
Grid	2400.0 🜲	2283.0 V	\checkmark	1 μA
Cage	5020.0 🜩	4768 V	\square	99 µA
Refl. Grid	665.0 🜩	632.0 V	\square	75 µA
Refl. Back	900.0 🜲	855.0 V	\square	167 µA
MCP F	5400 🜲	5134 V	\square	17 µA
MCP B	2570 🜲	2441 V	\square	223 µA

TOF voltages

Acquisition							ldle
💕 🖬 🗟							
Single Spec Ti	me (ms)	1000			-		
Extraction t	ime (μs)	5.0			: 1	372.5 a	mu
max Flight	time(µs)	32.0		ŀ	1	31.25	kHz
Data Save Se	ettings						
Spec 🗹	\checkmark	Trac	e			Raw	
Time Duratio	n					\sim	
02:00:00 🖨 S	ingle File	e Dura	atior	ı			
12 🖨	Number o	of File	es To	Sto	ore		
C:\lonicon\d	ata					@	
Add File C			n				-
<year>_<mo Data_<hour></hour></mo </year>	_			ond	>		
2022_06_02\D	ata_17_2)	0_31_	part	_X)	X		
Mass Axis Cal	ibration						
🞽 🖬 🗟	🖧 Cal		5	2	60 s	ec	-
Mass	TimeBin						
21.0220	16007		Û	^	а	1501	13.5
203.9400	161582		Û		b	-5282	24.1
330.8500	220260		Û	¥			

Acquisition Settings

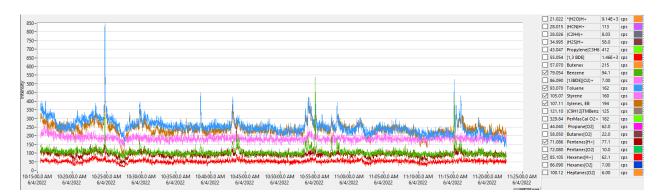
Dupont Neighborhood Sample Data

6-4-2022 PTR Settings

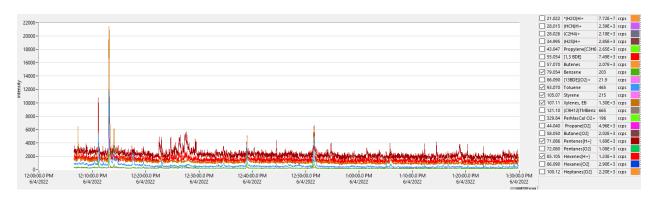
Western Hills Neighborhood

💕 🔒 🗟		⊙ ⊘
Setting	Odor	~ <i>3</i>
Primary lon	H3O+	
Transmission	DC	 ✓
	Man/Ctrl	Ctrl
PC	352.5 🌲	352.52 mbar
p Drift	2.30	2.29 mbar
TofLens		4.92E-5 mbar
TOF		7.19E-7 mbar
E/N		120 Td
Temps	80.10 °C	2° 00.08
SrcValve	50.0	
H2O	6.0	6.00 sccm
02	0.0	0.00 sccm
NO	0.0	0.00 sccm
lhc	4	4.0 mA
	On/Off	On
FCinlet	60.0	59.97 sccm
U FU	°C ⊡•	Ľ€
Us	150 🌲	145.0 V
Uso	80 🌲	78.6 V
Udrift	525 🌲	526.1 V
🛞 н	_	- ×
F F	1	
Hex1		OP
OFF/OI		ON
Frequenc	-	6.00Mhz
Amplitud	e 95.0 😫	57.8V
Offset -	0.70	-0.67V
<		>

Production Settings and Hexapole Settings


TPS 2-9-2	2 Ionicon	Fune of 1	_ ,	*Changed*
💕 ┢ 🖬			Mo	
Lens 1	12.0 🜲	12.0 V		All on 🗹
Lens 2	30.0 🜲	30.0 V		Lenses 🗸
Lens 3	20.0 🜲	21.0 V		
Lens 4	76.0 🜲	76.0 V		
Lens 5	70.0 🜲	70.0 V		
Lens 6	60.0 🜲	60.0 V		
Lens 7	17.0 韋	18.0 V		
Push L	16.5 🜲	16.0 V	\checkmark	3 mA
Push H	790.0 🜲	790.0 V	\square	2 mA
Pull L	87.0 🜲	87.0 V	\square	3 mA
Pull H	700.0 🚔	700.0 V	\square	3 mA
Grid	2400.0 🖨	2283.0 V		1 µA
Cage	5020.0 🖨	4766 V	\square	99 µA
Refl. Grid	665.0 🜲	631.0 V	\square	75 µA
Refl. Back	900.0 🜲	854.0 V	\square	167 µA
MCP F	5400 🜲	5134 V	\checkmark	17 µA
MCP B	2570 🜲	2441 V	\checkmark	224 µA

TOF Lens Settings


Acquisition				ACQ active
				nequeive
Single Spec Ti	me (ms)	1000	*	
Extraction t	ime (µs)	5.0	*	372.6 amu
max Flight	time(µs)	32.0	-	31.25 kHz
Data Save Se	ttings			
🗹 Spec	\checkmark	Trace		Raw
Time Duratio	n			\sim
02:00:00 🚔 S	ingle File	Duratio	n	
12 🚖 M	lumber o	f Files To	o Store	2
C:\lonicon\d	ata			(
Add File C				
<year>_<mo Data_<hour></hour></mo </year>		-	ond>	
2022_06_03\0	ata_17_18)	3_21_par	t_XXX	
Mass Axis Cal	ibration			
	🖧 Cal		✓ 60) sec 😫
Mass	TimeBin			
21.0220	15992	谊	^	a 15012
203.9400	161553	Û		b -52831.6
330.8500	220224	Û	•	

Acquisition Settings

Western Hills Sample Data

Western Hills Sample Data

APPENDIX E CALIBRATION GAS CERTIFICATION SHEETS

Airgas Specialty Gases Airgas USA, LLC 616 Miller Cut Off Road La Porte, TX 77571 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: CERTIFIED STANDARD-SPEC

Customer: Part	*CRYSTAL LAKE, IL* MONTROSE AIR QUALITY SERVICES X06NI99C15A00A3	Reference Number:	126-402159020-1
Number: Cylinder	CC344804	Cylinder Volume:	144.3 CF
Number: Laboratory: Analysis	124 - La Porte Mix - TX Jul 30, 2021	Cylinder Pressure: Valve Outlet:	2015 PSIG 350
Date: Lot Number	: 126-402159020-1 Expiration Date: Jul 30, 2024		

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

	AN	VALYTICAL RESULTS	
Component	Req Conc	Actual Concentration	Analytical
(Mole %) Uncerta			
HEXANE	1.000 PPM	0.9950 PPM	+/- 5%
N BUTANE	1.000 PPM	1.002 PPM	+/- 5%
N HEPTANE	1.000 PPM	1.000 PPM	+/- 5%
N PENTANE	1.000 PPM	1.000 PPM	*/~ 5%
PROPANE	1.000 PPM	1.009 PPM	+/- 5%
NITROGEN	Balance		

Notes:.

PO#PO-011307

Approved for Release

Page 1 of 126-402159020-1

Airgas USA, LLC 4646 Linden Rd Rockford, IL 61109 Airgas.com

CERTIFICATE OF BATCH ANALYSIS Grade of Product: ZERO

Lot Number:	152-402047887-1		
Analysis Date:	Mar 03, 2021	Valve Outlet:	590
Laboratory:	192 - Rockford IL Fill Plant (N513) - IL	Cylinder Pressure:	2000 PSIG
Cylinder Analyzed:	CC235228	Cylinder Volume:	146.0 CF
Part Number:	AJ Z15A	Reference Number:	152-402047887-1

Component		Requested Purity	Certified Concentration	
AIR				
THC	<	1.0 PPM	0.043 PPM	
Percent Oxygen		20-22 %	20.82 %	
Moisture	<	3.0 PPM	0.07 PPM	

CC235228, XC002876B

Impurities verified against analytical standards traceable to NIST by weight and/or analysis.

Signature on file

Approved for Release

Page 1 of 152-402047887-1

Airgas Specialty Gases Airgas USA, LLC 6141 Easton Road Bldg 2 Plumateadville, PA 18949 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: CERTIFIED STANDARD-SPEC

Part Number:	X02NI99C15A0A19	Reference Number:	SG02-IC000020641-1
Cylinder Number:	CC286616	Cylinder Volume:	143.25 CF
Laboratory:	124 - Plumsteadville - PA	Cylinder Pressure:	2000.0 PSIG
Analysis Date:	Jul 08, 2021	Valve Outlet:	350SS
Lot Number:	SG02-IC000020641-1		

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

	AI	NALYTICAL RESULTS	
Component	Req Conc	Actual Concentration (Mole %)	Analytical Uncertainty
HYDROGEN CYANIDE NITROGEN	1.000 PPM Balance	1.020 PPM	+/- 5%

Notes:

Analysis Date: 7/6/2021 Expiration Date: 7/6/2022 Blend +/- 20% Analytical +/- 5%

Approved for Release

Page 1 of SG02-IC000020641-1

Airgas USA, LLC 6141 Easton Road Bldg 1 Plumsteadville, PA 18949 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: CERTIFIED STANDARD-SPEC

Customer: Part Number: Cylinder Number: Laboratory: Analysis Date: Lot Number. MONTROSE ENVIRONMENTAL GROUP X02AI99C15AH586 ALM060589 124 - Plumsteadville - PA Feb 19, 2020 160-401735121-1 Expiration Date: Feb 19, 2023

Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet:

160-401735121-1 129.3 CF 2016 PSIG 590

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

	AN	NALYTICAL RESULTS	
Component	Req Conc	Actual Concentration (Mole %)	Analytical Uncertainty
BENZENE AIR	1.000 PPM Balance	1.055 PPM	+/- 5%

Chil

an Air Liquide company

Airgas Specialty Gases Airgas USA, LLC 616 Miller Cut Off Road La Porte, TX 77571 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: CERTIFIED STANDARD-SPEC

Customer: MONTROSE AIR QUALITY SERVICES LLC - CRYSTAL

LAKE , Part X07NI99C15A00A9 Number: Cylinder CC164840 Number: Laboratory: 124 - La Porte Mix - TX Analysis Aug 09, 2021 Date: Lot Number: 126-402159021-1

Reference Number:	126-402159021-1
Cylinder Volume:	144.3 CF
Cylinder Pressure: Valve Outlet:	2015 PSIG 350

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

Expiration Date: Aug 09, 2023

ANALYTICAL RESULTS

Component	Req Conc	Actual Concentration (Mole %)	Analytical Uncertainty
1 BUTENE	1.000 PPM	0.9918 PPM	+/- 5%
1 HEXENE	1.000 PPM	1.003 PPM	+/- 5%
1 PENTENE	1.000 PPM	1.005 PPM	+/- 5%
1,3 BUTADIENE	1.000 PPM	1.005 PPM	+/- 5%
ETHYLENE	1.000 PPM	1.087 PPM	+/- 5%
PROPYLENE	1.000 PPM	1.006 PPM	+/- 5%
NITROGEN	Balance		

Notes:

MONTROSE AIR QUALITY SERVICES LLC PO#: PO-011307 NITROGEN BALANCE : 99.99939022%

Approved for Release

Page 1 of 126-402159021-1

THIS IS THE LAST PAGE OF THIS DOCUMENT

